neutron star matter with in medium meson mass
play

Neutron Star Matter with In-Medium Meson Mass C. H. Hyun, M. H Kim, - PowerPoint PPT Presentation

Neutron Star Matter with In-Medium Meson Mass C. H. Hyun, M. H Kim, S. W. Hong Sungkyunkwan University B. K. Jennings TRIUMF Origin of Matter and Evolution of the Galaxies, November 17 19, 2003, RIKEN, Wako, Japan Outline 1.


  1. Neutron Star Matter with In-Medium Meson Mass C. H. Hyun, M. H Kim, S. W. Hong Sungkyunkwan University B. K. Jennings TRIUMF Origin of Matter and Evolution of the Galaxies, November 17 – 19, 2003, RIKEN, Wako, Japan

  2. Outline 1. Introduction 2. Models 3. Results for neutron star matter 4. Summary

  3. OMEG03 I 1 Introduction ⋆ Possible indication of hadron mass decrease in nuclear medium � Theory – Brown-Rho (BR) scaling (Brown and Rho, PRL66 (1991) 2720) ≈ m ∗ m ∗ ≈ m ∗ ≈ m ∗ ρ σ ω N . (1) m N m σ m ω m ρ – QCD-sum rule (Hatsuda and Lee, PRC46 (1992) R34) ≈ m ∗ m ∗ ρ ω ≃ 0 . 82 . (2) m ρ m ω – Quark-meson-coupling model (Saito, Tsushima and Thomas, PRC55 (1997) 4050) ≃ 0 . 79 , m ∗ m ∗ ≈ m ∗ ρ N ω ≃ 0 . 83 . (3) m N m ρ m ω

  4. OMEG03 II � Experiment : Dilepton decay of ρ - and ω - mesons – KEK-PS E325 (Ozawa et al. , PRL86 (2001) 5019) – CERES/NA45 Collab. (Adamov´ a et al. , PRL 91 (2003) 042301) ⋆ Contraints of symmetric nuclear matter at saturation density � E B = 16MeV at ρ 0 = 0 . 17 fm − 3 � m ∗ N = (0 . 7 ∼ 0 . 8) m N � K = 200 ∼ 300MeV � a sym = 32 . 5MeV ⋆ Neutron star (NS) : Narrow mass zone (Thorsett and Chakrabarty, ApJ. 512 (1999) 288) M NS = (1 . 0 ∼ 1 . 6) M ⊙ (4) ⋆ Question : Can the properties of NS be affected by meson-mass changes in matter? Constant meson mass vs Density-dependent meson mass

  5. OMEG03 III 2 Models ⋆ Models with constant meson mass (1) Walecka model (QHD) L MF QHD = L 0 + U (¯ σ ) , � � ω 0 − 1 ψ N − 1 σ 2 + 1 0 + 1 N − g ωN γ 0 ¯ 2 g ρN γ 0 ¯ L 0 = ¯ ρ ¯ iγ µ ∂ µ − m ∗ 2 m 2 2 m 2 ω 2 2 m 2 b 2 ψ N b 03 τ 3 σ ¯ ω ¯ 03 , m ∗ N = m N − g σN ¯ σ, σ ) = 1 σ ) 3 + 1 σ ) 4 . U (¯ 3 m N b ( g σN ¯ 4 c ( g σN ¯ ω 0 , ¯ – ¯ σ, ¯ b 03 : Mean field equation of motion – g σN , g ωN , b, c : From E B , ρ 0 , m ∗ N , K – g ρN : From a sym

  6. OMEG03 IV (2) Modified Quark-meson coupling model (MQMC) (X. Jin and B. K. Jennings, PRC54 (1996) 1427) ω 0 − 1 ω γ 0 ¯ ρ γ 0 ¯ MQMC = ¯ ψ q [ iγ µ ∂ µ − ( m 0 q − g q σ ) − g q 2 g q L MF σ ¯ b 03 τ 3 − B ] × θ V ( R − r ) ψ q − 1 σ 2 + 1 0 + 1 ρ ¯ 2 m 2 2 m 2 ω 2 2 m 2 b 2 σ ¯ ω ¯ 03 , �� − 3 x 2 � 2 q m ∗ E N N = R 2 , bag bag = 3Ω q R − Z N R + 4 E N 3 πR 3 B, � q − g q ( m ∗ q = m 0 x 2 q + R 2 m ∗ 2 Ω q = q , σ ¯ σ ) , � δ � 4 σ ¯ 1 − g B B = B 0 σ δ m N – B 0 , Z N : From m N = 939 MeV at R = 0 . 6 fm – g q σ , g q ω , g B σ , δ : From E B , ρ 0 , m ∗ N , K – g q ρ : From a sym

  7. OMEG03 V ⋆ Models with density-dependent meson mass (1) BR-scaled effective chiral Lagrangian (QHD-BR) (C. Song et al. , PRC56 (1997) 2244) L = L 0 ( m σ → m ∗ σ , m V → m ∗ V , g V N → g ∗ V N ) , ( V = ω, ρ ) m ∗ N = M ∗ N − g σN ¯ σ, � − 1 M ∗ = m ∗ = m ∗ � 1 + y ρ N σ V = , m N m σ m V ρ 0 � − 1 g ∗ � 1 + z ρ V N = g V N ρ 0 – g σN , g ωN , y, z : From E B , ρ 0 , m ∗ N , K (2) MQMC with scaled meson mass (SMQMC) L = L MF MQMC ( m σ → m ∗ σ , m V → m ∗ V ) – More parameters than the number of contraints : y fitted to BR-scaling law

  8. OMEG03 VI (3) MQMC with meson bag (MQMC-MB) L = L MF MQMC ( m V → m ∗ V ) , �� − 2 x 2 � 2 q m ∗ E V V = R 2 , bag bag = 2Ω q R − Z V R + 4 3 π R 3 B E V – Z V : From m V (770 MeV for ρ -meson and 783 MeV for ω -meson) ⋆ Properties at the saturation Constant meson mass Density dependent meson mass QHD MQMC QHD-BR SMQMC MQMC-MB m ∗ N /m N 0.77 0.78 0.67 0.76 0.85 m ∗ V /m V 1.0 1.0 0.78 0.78 0.86 K (MeV) 311 286 265 592 324

  9. OMEG03 VII 3 Results for neutron star matter ⋆ Equation of state (EoS) 700 700 600 QHD 600 MQMC QHD-BR SMQMC 500 500 P (MeV/fm 3 ) MQMC-MB 400 400 300 300 200 200 100 100 0 0 0 100 300 500 700 0 100 300 500 700 ε (MeV/fm 3 ) ε (MeV/fm 3 ) � Stiffer equation of state → Larger maximum mass of NS

  10. OMEG03 VIII � Why is the EoS so stiff? P ≃ − P σ + P ω + P ρ + P N , P σ = 1 P ω = 1 P ρ = 1 ρ ¯ 2 m ∗ 2 σ 2 , 2 m ∗ 2 ω 2 2 m ∗ 2 b 2 σ ¯ ω ¯ 0 , 30 , � k N k 4 1 � P N = dk. k 2 + m ∗ 2 3 π 2 � 0 N N = n,p 250 250 P N P N QHD QHD-BR P σ P σ 200 200 P ω P ω P (MeV/fm 3 ) P ρ P ρ 150 150 100 100 50 50 0 0 0 1 2 3 4 0 1 2 3 4 ρ / ρ 0 ρ / ρ 0

  11. OMEG03 IX ⋆ Particle fraction : ρ i /ρ ( i = n, p, e, µ ) 1 1 QHD QHD-BR Particle Fraction 0.1 0.1 n p n 0.01 e 0.01 p µ e µ 0.001 0 0.5 1 1.5 2 2.5 3 3.5 4 0.001 0 0.5 1 1.5 2 2.5 3 3.5 4 ρ / ρ 0 1 1 1 MQMC SMQMC MQMC-MB 0.1 0.1 0.1 n n n p p p 0.01 0.01 0.01 e e e µ µ µ 0.001 0.001 0.001 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

  12. OMEG03 X 4 Summary ⋆ The effect of density-dependent meson mass on the properties of NS matter was investigated. ⋆ EoS is sensitive to the behavior of meson mass. ⋆ Hyperon degrees of freedom need to be included. ⋆ Many possibilities are still wide open.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend