neutrino portal dark matter
play

Neutrino Portal Dark Matter Barmak Shams Es Haghi U.Pittsburgh/U. - PowerPoint PPT Presentation

Neutrino Portal Dark Matter Barmak Shams Es Haghi U.Pittsburgh/U. Utah with Brian Batell, Tao Han, David McKeen Searching for New Physics, U.Utah August 5, 2019 The Standard Model of Elementary Particles successfully describes the particles


  1. Neutrino Portal Dark Matter Barmak Shams Es Haghi U.Pittsburgh/U. Utah with Brian Batell, Tao Han, David McKeen Searching for New Physics, U.Utah August 5, 2019

  2. The Standard Model of Elementary Particles successfully describes the particles and their interactions. Last triumph: Higgs discovery in 2012 But there are still some issues: •Dark matter •Neutrino mass •Naturalness •… All involve beyond the SM physics 1

  3. Dark Matter (Gravitational Evidence): • Rotation Curves • CMB • Structure Formation • Gravitational lensing 2

  4. Properties • Stable (life time > age of the universe) • Dark/Dissipationless • Collisionless bullet cluster: on Mps scales, no interaction ⌘ ✓ 1GeV ◆ ⇣ σ ≤ 1 10 − 24 cm 2 m DM • Cannot be arbitrarily light, otherwise QM get in the way Non-gravitational Interaction? 3

  5. Non-gravitational Interaction of DM: Renormalizable Portals ( λ 1 S + λ 2 S 2 ) | H | 2 • Scalar portal • Vector portal B µ ν V µ ν • Neutrino portal LHN Motivations For Neutrino Portal: • Explains neutrino mass (via seesaw mechanism) • Less well-studied portal to the Dark Sector • Dark Matter 4

  6. <latexit sha1_base64="pdMfCRLIsEpkK5fbfnJy1nEUZ10=">AC0XicdVJNbxMxEPVu+Sjho2k5chkRIZUDYV0R2t4qOMCpKoKklbJh5XW8iVXbu9izlVarIMSVf8eNf8DPwJslDYwkuXxm/dmPGOnhZIOo+hHEG7cuHnr9uadzt179x9sdbd3Ri4vLRdDnqvcnqXMCSWNGKJEJc4K5hOlThNz1838dMLYZ3MzQesCjHRbGZkJjlDyXdn0OIndQZ5ZxqKGC1j4XSfHfl+F3CeLHvpN0ZA0J1N6wiW1JdMIPnrsGQwaBKUWDmIlMtz9rz7qRwOINcO51f4oRqtsVs7m+HSZjcJz2Guwq4kuNW9a0Z97r4uTbi/qDyJ6+JI2FZcG9LrTI62dJN3v8TnpRYGuWLOjWlU4KRmFiVXYtGJSycKxs/ZTIy9a5hvdVIvX2QBTzwyhSy3fhmEJfq3ombauUqntk04a7HGvBfsXGJ2cGklqYoURi+KpSVCjCH5nlhKq3gqCrvMG6lvyvwOfPzQv8JOn4Iay2vO6O9Po369N2L3tGrdhyb5BF5THYJfvkiLwlJ2RIeHAcYLAIPofvwyr8En5dUcOg1TwkVyz89gtN19SF</latexit> <latexit sha1_base64="pdMfCRLIsEpkK5fbfnJy1nEUZ10=">AC0XicdVJNbxMxEPVu+Sjho2k5chkRIZUDYV0R2t4qOMCpKoKklbJh5XW8iVXbu9izlVarIMSVf8eNf8DPwJslDYwkuXxm/dmPGOnhZIOo+hHEG7cuHnr9uadzt179x9sdbd3Ri4vLRdDnqvcnqXMCSWNGKJEJc4K5hOlThNz1838dMLYZ3MzQesCjHRbGZkJjlDyXdn0OIndQZ5ZxqKGC1j4XSfHfl+F3CeLHvpN0ZA0J1N6wiW1JdMIPnrsGQwaBKUWDmIlMtz9rz7qRwOINcO51f4oRqtsVs7m+HSZjcJz2Guwq4kuNW9a0Z97r4uTbi/qDyJ6+JI2FZcG9LrTI62dJN3v8TnpRYGuWLOjWlU4KRmFiVXYtGJSycKxs/ZTIy9a5hvdVIvX2QBTzwyhSy3fhmEJfq3ombauUqntk04a7HGvBfsXGJ2cGklqYoURi+KpSVCjCH5nlhKq3gqCrvMG6lvyvwOfPzQv8JOn4Iay2vO6O9Po369N2L3tGrdhyb5BF5THYJfvkiLwlJ2RIeHAcYLAIPofvwyr8En5dUcOg1TwkVyz89gtN19SF</latexit> <latexit sha1_base64="pdMfCRLIsEpkK5fbfnJy1nEUZ10=">AC0XicdVJNbxMxEPVu+Sjho2k5chkRIZUDYV0R2t4qOMCpKoKklbJh5XW8iVXbu9izlVarIMSVf8eNf8DPwJslDYwkuXxm/dmPGOnhZIOo+hHEG7cuHnr9uadzt179x9sdbd3Ri4vLRdDnqvcnqXMCSWNGKJEJc4K5hOlThNz1838dMLYZ3MzQesCjHRbGZkJjlDyXdn0OIndQZ5ZxqKGC1j4XSfHfl+F3CeLHvpN0ZA0J1N6wiW1JdMIPnrsGQwaBKUWDmIlMtz9rz7qRwOINcO51f4oRqtsVs7m+HSZjcJz2Guwq4kuNW9a0Z97r4uTbi/qDyJ6+JI2FZcG9LrTI62dJN3v8TnpRYGuWLOjWlU4KRmFiVXYtGJSycKxs/ZTIy9a5hvdVIvX2QBTzwyhSy3fhmEJfq3ombauUqntk04a7HGvBfsXGJ2cGklqYoURi+KpSVCjCH5nlhKq3gqCrvMG6lvyvwOfPzQv8JOn4Iay2vO6O9Po369N2L3tGrdhyb5BF5THYJfvkiLwlJ2RIeHAcYLAIPofvwyr8En5dUcOg1TwkVyz89gtN19SF</latexit> <latexit sha1_base64="pdMfCRLIsEpkK5fbfnJy1nEUZ10=">AC0XicdVJNbxMxEPVu+Sjho2k5chkRIZUDYV0R2t4qOMCpKoKklbJh5XW8iVXbu9izlVarIMSVf8eNf8DPwJslDYwkuXxm/dmPGOnhZIOo+hHEG7cuHnr9uadzt179x9sdbd3Ri4vLRdDnqvcnqXMCSWNGKJEJc4K5hOlThNz1838dMLYZ3MzQesCjHRbGZkJjlDyXdn0OIndQZ5ZxqKGC1j4XSfHfl+F3CeLHvpN0ZA0J1N6wiW1JdMIPnrsGQwaBKUWDmIlMtz9rz7qRwOINcO51f4oRqtsVs7m+HSZjcJz2Guwq4kuNW9a0Z97r4uTbi/qDyJ6+JI2FZcG9LrTI62dJN3v8TnpRYGuWLOjWlU4KRmFiVXYtGJSycKxs/ZTIy9a5hvdVIvX2QBTzwyhSy3fhmEJfq3ombauUqntk04a7HGvBfsXGJ2cGklqYoURi+KpSVCjCH5nlhKq3gqCrvMG6lvyvwOfPzQv8JOn4Iay2vO6O9Po369N2L3tGrdhyb5BF5THYJfvkiLwlJ2RIeHAcYLAIPofvwyr8En5dUcOg1TwkVyz89gtN19SF</latexit> Typical Seesaw: L ⊃ − 1 2 m N NN − yLHN − λ N φχ + h.c. Diagonalizing the mass matrix light neutrino, heavy neutrino, and mixing angle: Secluded m χ > m N 1 − U 2 ∼ regime Direct m χ < m N annihilation to SM U 2 ∼ r m ν ◆ 1 / 2 Direct annihilation to ⌘ 1 / 2 ✓ GeV U ∼ yv m ν ⇣ ∼ 10 − 5 × ∼ light neutrinos is inefficient m N m N 0 . 05eV m N 5

  7. Secluded regime m χ > m N Parameters : { λ , m φ , m χ , m N } � ! { h σ v i , m χ , m N } i 2 h Re( λ ) 2 ( m χ + m N ) + Im( λ ) 2 ( m χ � m N ) ◆ 1 / 2 1 � m 2 ✓ N h σ v i = 16 π [ m 2 χ � m 2 φ + m 2 N ] 2 m 2 χ Relic Abundance & Cosmology: Thermal equilibrium: h σ v i ⇠ h σ v i thermal h σ v i thermal = 2 . 2 ⇥ 10 − 26 cm 3 s − 1 Mass range: Unitarity + Thermal WIMP + BBN 1 GeV < m N < m χ . 20 TeV Yukawa coupling is small, ⌘ 1 / 2 Direct Detection/Production y ' 10 − 6 ⇣ m N p ( ∆ m ν ) atm ∼ 0 . 05 eV → m ν ∼ at Collider are challenging. 246 GeV 6

  8. Indirect Detection: DM can have multiple annihilation channels signature of DM: an excess of the final stable particles over the astrophysical background Quantity of interest: Energy spectrum per DM annihilation in the photon, electron,… channels Image Credit: Sky & Telescope / Simulation Spectrum Gregg Dinderman 7

  9. Simulation Chain: SM_HeavyN_NLO MadGraph5_aMC@NLO dN a,f Pythia Model Files (Generating Events) (Hadronize + Shower) dE a (SM+ 3 heavy neutrinos) (Spectrum) Alva, Han, Ruiz 2015 Degrande, Mattelaer, Ruiz , Turner 2016 � - ������� ������� � ������� ������� γ ������� ������� � � = �� ��� � � = �� ��� � � = �� ��� χχ→ �� χχ→ �� χχ→ �� �� � � � = �� ��� � � = �� ��� � � = �� ��� �� �� � � χ = ��� ��� � χ = ��� ��� � χ = ��� ��� � � = ��� ��� � � = ��� ��� � � = ��� ��� � �� � / �� � [ ��� ] � �� γ / �� γ [ ��� ] _ [ ��� ] �� �� _ / �� � � � �� � � � � γ � � _ � � �� - � �� - � �� - � �� � � �� �� - � � �� �� � � �� �� � � � [ ��� ] _ [ ��� ] � γ [ ��� ] � � 8

  10. CMB e − + p ⌦ H + γ binding energy : 13.6 eV Z ~1100 DM annihilation products: electron/positron & photon: heating and ionization occurs primarily through them ✓ dE ◆ DM ( z ) h σ v i h σ v i = ρ 2 = (1 + z ) 6 ρ 2 crit Ω 2 DM, 0 dV dt m DM m DM injected ✓ dE ✓ dE ◆ ◆ = f ( z ) dV dt dV dt deposited injected f e ff ( m DM ) h σ v i Planck limit: < 4 . 1 ⇥ 10 − 28 cm 3 / s / GeV Ade et al. ,2016 m DM 9

  11. ������ ��� �� % ���� ����� ��� �� 〈σ � 〉 ����� ��� �� 〈σ � 〉 ������� λ [ � ϕ = � χ ] �� � - ���� � π � χ = � � � � [ ��� ] � �� � - ���� ��� - �� - �� �� - ���� - �� �� � �� � �� � χ [ ��� ] 10

  12. Gamma rays from dwarf spheroidal galaxies (dSphs) very clean sources for indirect detection: Large DM content • Having few stars and little gas, negligible background • 6 years of Fermi Large Area Telescope (LAT) data: The Fermi analysis is based on a joint maximum likelihood analysis of 15 dSphs for gamma ray energies in the 500 MeV - 500 GeV range. = 1 h � ann v i d Φ a dN a,f Z X ⇢ 2 B f ⇥ DM ( ~ x ) dV 2 m 2 4 ⇡ dE a dE a V DM f Astrophysics Flux Particle Physics ( J - factor) Given that no significant excess is observed, a delta-log-likelihood method is used to 11 set limits on DM model parameters.

  13. ����� ����� �� % ���� ����� ��� �� 〈σ � 〉 ����� ��� �� 〈σ � 〉 ������� λ [ � ϕ = � χ ] �� � � � χ = � � � � [ ��� ] � π �� � ��� - �� - �� - ���� - ���� - ���� �� - �� �� � �� � �� 12 � χ [ ��� ]

  14. Antiprotons Antiproton content of the astrophysical background is rare: • its production costs us a lot of energy ∼ 7 m P energy flux of cosmic rays is very steep peaked around 0.1 GeV • DM annihilation will produce as much antiproton as proton! Antiprotons deflection by the Galactic magnetic field and their propagation may be seen as a diffusion process. The Alpha Magnetic Spectrometer (AMS-02) has provided the most precise measurements of the cosmic ray proton and antiproton flux to date. 13

  15. Giesen, et al. 2015 � ������� ������� � � = �� ��� χχ→ �� � � = �� ��� �� � χ = ��� ��� � � = ��� ��� _ [ ��� ] _ / �� � Used Einasto profile & the MED propagation scheme � � �� � � � _ χ 2 ( m χ , h σ v i ) � χ 2 0  4 is the best fit assuming no χ 2 0 primary DM antiproton source �� - � �� � � �� 14 _ [ ��� ] � �

  16. ��� - �� ���������� ����� ��� �� 〈σ � 〉 ����� ��� �� 〈σ � 〉 ������� λ [ � ϕ = � χ ] �� � � π � χ = � � � � [ ��� ] � ��� �� � �� - �� - �� - �� - �� �� � �� � �� 15 � χ [ ��� ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend