neutrino physics from the cmb large scale structure report
play

Neutrino Physics from the CMB & Large Scale Structure - Report - PowerPoint PPT Presentation

Neutrino Physics from the CMB & Large Scale Structure - Report - Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Contributors: K.N. Abazajian, B.A. Benson, J. Bock, J. Borrill, J.E. Carlstrom, C.L. Chang, S. Church, A. Cooray,


  1. Neutrino Physics from the CMB & Large Scale Structure - Report - Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Contributors: K.N. Abazajian, B.A. Benson, J. Bock, J. Borrill, J.E. Carlstrom, C.L. Chang, S. Church, A. Cooray, T.M. Crawford, K.S. Dawson, S. Das, S. Dodelson, J. Errard, S. Hanany, W.L. Holzapfel, K. Honscheid, M. Kamionkowski, R. Keisler, L. Knox, J. Kovac, C.-L. Kuo, C. Lawrence, A.T. Lee, E. Linder, P. Lubin, A. Miller, M.D. Niemack, C. Pryke, C. Reichardt, U. Seljak, E. Silverstein, A. Slosar, R. Stompor, A. Vieregg, E.J. Wollack, W.L.K. Wu, K.W. Yoon, and O. Zahn Paper: http://is.gd/AnSecR [arXiv on Friday (?)] Cosmic Frontier Snowmass Community Summer Study 2013 August 1, 2013

  2. The Cosmological Matter Power Spectrum Inflation: ? Perturbations enter horizon: Matter Domination Radiation Domination [ δΦ mat const] [ δΦ rad decays] horizon size P(k) → k →

  3. How does probe neutrinos? (Assuming thermal equilibrium)

  4. How does probe neutrinos? (Assuming thermal equilibrium) P(k) → k →

  5. How does probe neutrinos? (Assuming thermal equilibrium) Radiation Matter Domination Domination P(k) → k →

  6. How does probe neutrinos? (Assuming thermal equilibrium) Radiation Matter Domination Domination P(k) → k →

  7. How does probe neutrinos? (Assuming thermal equilibrium) Radiation Matter Domination Domination P(k) → Is this a coincidence? k →

  8. How does probe neutrinos? (Assuming thermal equilibrium) � Radiation Matter Domination ρ ν = m i n ν i Domination � m ν i P(k) → Ω ν ≈ 93 h 2 eV E 2 = p 2 + m 2 Is this a coincidence? k →

  9. Distinguishing Features in the Power Spectrum Σ m ν i = 0 . 14 eV P(k) → Σ m ν i = 1 . 4 eV Lesgourgues & Pastor (2006) k → 1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing) 2. Relative Amplitude Information: ∆ P ( k ) = − 8 Ω ν CMB plus Lyman-alpha Forest, Galaxy Bias P ( k ) Ω m

  10. Distinguishing Features in the Power Spectrum Σ m ν i = 0 . 14 eV P(k) → Galaxy Surveys Σ m ν i = 1 . 4 eV Lesgourgues & Pastor (2006) k → 1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing) 2. Relative Amplitude Information: ∆ P ( k ) = − 8 Ω ν CMB plus Lyman-alpha Forest, Galaxy Bias P ( k ) Ω m

  11. Distinguishing Features in the Power Spectrum Σ m ν i = 0 . 14 eV P(k) → Galaxy Surveys Σ m ν i = 1 . 4 eV Relative Amplitude:CMB+Lya Lesgourgues & Pastor (2006) k → 1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing) 2. Relative Amplitude Information: ∆ P ( k ) = − 8 Ω ν CMB plus Lyman-alpha Forest, Galaxy Bias P ( k ) Ω m

  12. The Primordial Spectrum: Precision Determination at Large Scales P(k) → k → P ( k ) = Ak n Planck 1-Year + WMAP Pol.: (Planck Collab. 2013) A = 2 . 196 +0 . 051 (3%) − 0 . 060 n = 0 . 9603 ± 0 . 0073 (0 . 8%)

  13. Measuring P ( k ): from largest to smallest scales CMB SDSS Ly- α

  14. Upcoming High-Precision Era: Relative Change to P ( k )

  15. Ω m & Other Parameter Degeneracy Ω m

  16. Cosmological Matter Power Spectrum & CMB Constraints on N eff For LSS: Perturbations enter horizon at M/R equality Matter Domination Radiation Domination [ δΦ mat const] [ δΦ rad decays] horizon size P(k) → k → For BAO: Extra radiation changes expansion rate from perturbation evolution through baryon decoupling

  17. & N eff [Dodelson (SLAC Cosmic Frontiers)]

  18. Summary of Cosmological N eff Measures • SDSS BOSS Galaxy Clustering + BAO + WMAP 7 + SNe + H 0 (Zhao et. al 2012) N e ff = 4 . 308 ± 0 . 794 WMAP7 68% CL • SPT + WMAP 7 + H 0 (Hou et al. 2012) ... N e ff = 3 . 71 ± 0 . 35 • ACT + WMAP 7 + BAO + H 0 (Sievers et. al 2013) N e ff = 2 . 78 ± 0 . 55 • WMAP 9 + eCMB + BAO + H 0 (Hinshaw et al. 2012 v2 ) WMAP9 N e ff = 3 . 84 ± 0 . 40 Planck • Planck + high-l CMB + WMAP P + BAO (Planck Collab. 2013) N e ff = 3 . 30 ± 0 . 27

  19. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m

  20. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV

  21. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV ⇒ m ν . (1% / 8) × Ω m (93 h 2 eV) =

  22. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV ⇒ m ν . (1% / 8) × Ω m (93 h 2 eV) = ⇒ m ν . 20 meV =

  23. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV ⇒ m ν . (1% / 8) × Ω m (93 h 2 eV) = ⇒ m ν . 20 meV = Kaplinghat et al PRL 2003 (CMB WL) Wang et al PRL 2005 (WL Clusters) De Bernardis et al. 2009 (Opt. WL) Joudaki & Kaplinghat 2011 (LSST) Basse et al. 2013 (Euclid) CF5 Neutrino Report 2013

  24. Lensing of the CMB Hu & Okamoto 2001

  25. Lensing of the CMB Hu & Okamoto 2001

  26. Lensing of the CMB • Higher-order statistics in CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck) Hu & Okamoto 2001

  27. Lensing of the CMB • Higher-order statistics in CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck) • Lensing also mixes polarization E modes to B modes, providing more information. (detected by SPT) Hu & Okamoto 2001

  28. Lensing of the CMB • Higher-order statistics in CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck) • Lensing also mixes polarization E modes to B modes, providing more information. (detected by SPT) • Detailed, high signal-to- noise measurements of arcminute polarization can therefore be used to reconstruct the lensing Hu & Okamoto 2001 potential C L φφ

  29. Lensing Potential Power: Relative Change over an Integrated P ( k )

  30. Σ m ν : The March of Time

  31. Σ m ν : The March of Time 2 (95% CL) m ν [eV] 1 X

  32. Σ m ν : The March of Time 2 (95% CL) m ν [eV] 1 X

  33. Σ m ν : The March of Time 2 (95% CL) m ν [eV] 1 X 2003

  34. Σ m ν : The March of Time 2 (95% CL) 2dFGRS m ν [eV] 1 X 2003

  35. Σ m ν : The March of Time 2 (95% CL) 2dFGRS m ν [eV] 1 X 2003 2006

  36. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time

  37. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS

  38. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010

  39. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone

  40. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone 2012

  41. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012

  42. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO

  43. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO 2013

  44. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO ACT + WMAP 7 + BAO 2013

  45. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO ACT + WMAP 7 + BAO 2013 Planck + BAO

  46. (95% CL) X m ν [eV] 1 2 Oscillations 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO ACT + WMAP 7 + BAO 2013 Planck + BAO

  47. Cosmological & Laboratory Complementarity

  48. CMB & LSS Complementarity: Parameter Degeneracy

  49. Stage IV CMB + DESI: Σ m ν vs. N eff

  50. Forecast Sensitivities σ ( N eff ) σ ( Σ m ν ) CF5 Neutrino Paper

  51. Forecast Sensitivities σ ( N eff ) σ ( Σ m ν ) CF5 Neutrino Paper

  52. Neutrino Mass from Cosmology: What would break if cosmology and neutrino experiment disagree? P(k) → 1. Primordial power spectrum P ( k ) is a simple power law k → 2. No other prevalent “non-vanilla” cosmological parameters and physics: w , N eff , modified gravity...

  53. Summary

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend