neutrino mass seesaw version 3 recent developments
play

Neutrino Mass Seesaw Version 3 : Recent Developments Ernest Ma - PowerPoint PPT Presentation

Neutrino Mass Seesaw Version 3 : Recent Developments Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 1 Contents


  1. Neutrino Mass Seesaw Version 3 : Recent Developments Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 1

  2. Contents • Neutrino Mass • Gauge Coupling Unification • LHC Phenomenology • New U(1) Gauge Symmetry • Scotogenic Radiative Neutrino Mass • Fermion Triplet Dark Matter • Conclusion Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 2

  3. Neutrino Mass: Six Generic Mechanisms Weinberg(1979): Unique dimension-five operator for Majorana neutrino mass in the standard model (SM): 2Λ( ν α φ 0 − l α φ + )( ν β φ 0 − l β φ + ) ⇒ M ν = f αβ v 2 f αβ . Λ Ma(1998): Three tree-level realizations: (I) fermion singlet N , (II) scalar triplet ( ξ ++ , ξ + , ξ 0 ) , (III) fermion triplet (Σ + , Σ 0 , Σ − ) [Foot/Lew/He/Joshi(1989)]; and three generic one-loop realizations (IV), (V), (VI). Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 3

  4. φ 0 φ 0 φ 0 φ 0 ξ 0 ν β ν β ν α ν α N Σ 0 Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 4

  5. ✆ ✟ ✠ ✡☞☛ �☎✄ �✂✁ ✆✞✝ ✡☞☛ Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 5

  6. ✆ ✟ ✠ ✡☞☛ ✡☞☛ �☎✄ �✂✁ ✆✞✝ Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 6

  7. ✆ ✝ ✆ ✞ ✠ �✂✁ �☎✄ ✝✟✞ ✡☞☛ ✡☞☛ Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 7

  8. Gauge Coupling Unification It is well-known that gauge-coupling unification occurs for the minimal supersymmetric standard model (MSSM) but not the SM. The difference can be traced to the addition of gauginos and higgsinos, transforming under SU (3) C × SU (2) L × U (1) Y as (8,1,0), (1,3,0), (1,2, ± 1/2), and a second Higgs scalar doublet. Note that the fermion triplet (1,3,0) is what makes the SU (2) L and U (1) Y couplings meet at high enough an energy scale to be acceptable for suppressing proton decay. Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 8

  9. The one-loop renormalization-group equations for the evolution of gauge couplings between M 1 and M 2 are α i ( M 1 ) − 1 − α i ( M 2 ) − 1 = ( b i / 2 π ) ln( M 2 /M 1 ) , where α i = g 2 i / 4 π , and the numbers b i are determined by the particle content of the model. In the SM, these are SU (3) C : b C = − 11 + (4 / 3) N f = − 7 , SU (2) L : b L = − 22 / 3 + (4 / 3) N f + 1 / 6 = − 19 / 6 , U (1) Y : b Y = (4 / 3) N f + 1 / 10 = 41 / 10 , where N f = 3 is the number of families and unification means α C ( M U ) = α L ( M U ) = (5 / 3) α Y ( M U ) = α U . Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 9

  10. Using the input α C ( M Z ) = 0 . 122 , α L ( M Z ) = 0 . 0340 , α Y ( M Z ) = 0 . 0102 , it is easy to check that gauge couplings do not unify in the SM. Model b Y − b L b L − b C new fermions new scalars SM 7.27 3.83 none none MSSM 5.60 4.00 (1,3,0),(8,1,0) (1,2,1/2) (1,2, ± 1/2) m05 5.27 3.83 (1,3,0) (1,3,0) × 2 (8,1,0) × 4 bs07 5.60 3.00 (1,3,0), (8,1,0) (1,3,0) (8,1,0) Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 10

  11. If all particles transforming under SU (2) L × U (1) Y are at the electroweak scale, then ln( M U /M Z ) ≃ √ 2 π 2 [(3 / 5 tan 2 θ W ) − 1] /G F M 2 W ( b Y − b L ) . Hence M U > 10 16 GeV ⇒ b Y − b L < 5 . 7 . Ma(2005): all new particles ∼ TeV. Bajc/Senjanovic(2007): color octets ∼ 10 8 GeV. Instead of just one (Σ + , Σ 0 , Σ − ) fermion triplet, let there be three copies at an intermediate scale M I , then gauge-coupling unification ∼ 10 16 GeV ⇒ M I ∼ 10 10 GeV, which is also the right scale for leptogenesis through the decay of the lightest Σ [Fischler/Flauger(2008)]. Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 11

  12. LHC Phenomenology If Σ exists at the TeV scale, it may be probed at the LHC. Its production is by pairs from quark fusion via the electroweak gauge bosons with a cross section of the order 1 fb for m Σ of about 1 TeV, and rising to more than 10 2 fb if m Σ is 300 GeV. The mass splitting between Σ 0 and Σ ± is radiative and comes from electroweak gauge interactions. For large m Σ , it is about 168 MeV, thus allowing Σ ± → Σ 0 π ± and Σ 0 l ± ν . The dominant decays are however Σ ± → νW ± , l ± Z ( h ) and Σ 0 → l ± W ∓ , νZ ( h ) unless a symmetry forbids them. Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 12

  13. del Aguila/Aguilar-Saavedra(2008): final state m N (100 GeV) m ξ (300 GeV) m Σ (300 GeV) 6 leptons – – × 28 fb − 1 5 leptons – – l ± l ± l ± l ∓ 15 fb − 1 – – l + l + l − l − 19 fb − 1 7 fb − 1 – l ± l ± l ± 30 fb − 1 – – l ± l ± l ∓ < 180 fb − 1 3.6 fb − 1 2.5 fb − 1 l ± l ± < 180 fb − 1 17.4 fb − 1 1.7 fb − 1 l + l − 15 fb − 1 80 fb − 1 × l ± × × × Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 13

  14. New U(1) Gauge Symmetry Ma(2002) : Consider SU (3) C × SU (2) L × U (1) Y × U (1) X with ( u, d ) L ∼ (3 , 2 , 1 / 6; n 1 ) , u R ∼ (3 , 1 , 2 / 3; n 2 ) , d R ∼ (3 , 1 , − 1 / 3; n 3 ) , ( ν, e ) L ∼ (1 , 2 , − 1 / 2; n 4 ) , e R ∼ (1 , 1 , − 1; n 5 ) , Σ ∼ (1 , 3 , 0; n 6 ) . Absence of the axial-vector anomaly requires [ SU (3)] 2 U (1) X : 2 n 1 − n 2 − n 3 = 0 . [ U (1) Y ] 2 U (1) X : n 1 − 8 n 2 − 2 n 3 + 3 n 4 − 6 n 5 = 0 . U (1) Y [ U (1) X ] 2 : n 2 1 − 2 n 2 2 + n 2 3 − n 2 4 + n 2 5 = (3 n 1 + n 4 )(7 n 1 − 4 n 2 − 3 n 4 ) / 4 = 0 . Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 14

  15. n 4 = − 3 n 1 ⇒ U (1) Y , so n 2 = (7 n 1 − 3 n 4 ) / 4 will be assumed from now on. In that case, n 3 = ( n 1 + 3 n 4 ) / 4 and n 5 = ( − 9 n 1 + 5 n 4 ) / 4 . [ SU (2)] 2 U (1) X : 3 n 1 + n 4 − 4 n 6 = 0 . Mixed gravitational-gauge anomaly U (1) X : 6 n 1 − 3 n 2 − 3 n 3 +2 n 4 − n 5 − 3 n 6 = 3(3 n 1 + n 4 − 4 n 6 ) / 4 = 0 . [ U (1) X ] 3 : 6 n 3 1 − 3 n 3 2 − 3 n 3 3 + 2 n 3 4 − n 3 5 − 3 n 3 6 = 3(3 n 1 + n 4 ) 3 / 64 − 3 n 3 6 = 0 . Hence n 6 = (3 n 1 + n 4 ) / 4 satisfies all 3 conditions. If a fermion multiplet (1 , 2 p + 1 , 0; n 6 ) is used, the only solutions are p = 0 [ U (1) B − L ] and p = 1 [ U (1) X ]. Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 15

  16. The scalar sector of this U (1) X model consists of two Higgs doublets ( φ + 1 , φ 0 1 ) with charge (9 n 1 − n 4 ) / 4 which couples to charged leptons, and ( φ + 2 , φ 0 2 ) with charge (3 n 1 − 3 n 4 ) / 4 which couples to up and down quarks as well as to Σ . To break the U (1) X gauge symmetry spontaneously, a singlet χ with charge − 2 n 6 is added, which also allows the Σ ’s to acquire Majorana masses at the U (1) X breaking scale. Adhikari/Erler/Ma(2008): The new gauge boson X may be accessible at the LHC. Its decay branching ratios could determine the parameter r = n 4 /n 1 = tan φ . Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 16

  17. 7000 95% CL excluded 6000 5000 M X /g X [GeV] 4000 3000 2000 1000 0 π 0 π/4 3/4 π π/2 φ Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 17

  18. 3.5 r � 1 3 2.5 ������� �� � 2 � � � � X �Μ Μ � � X � t t ���������������� 1.5 1 r � 2 r � 9 0.5 1 2 3 4 �� � � � X � b b ���������������� ������� �� � � � X �Μ Μ Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 18

  19. Scotogenic Radiative Neutrino Mass Deshpande/Ma(1978): Add to the SM a second scalar doublet ( η + , η 0 ) which is odd under a new exactly conserved Z 2 discrete symmetry, then η 0 R or η 0 I is absolutely stable. This simple idea lay dormant for almost thirty years until Ma, Phys. Rev. D 73, 077301 (2006). It was then studied seriously in Barbieri/Hall/Rychkov(2006), Lopez Honorez/Nezri/Oliver/Tytgat(2007), Gustafsson/Lundstrom/Bergstrom/Edsjo(2007), and Cao/Ma/Rajasekaran, Phys. Rev. D 76, 095011 (2007). Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 19

  20. Radiative Neutrino Mass: Zee(1980): (IV) ω = ( ν, l ) , ω c = l c , χ = χ + , η = ( φ + 1 , 2 , φ 0 1 , 2 ) , � φ 0 1 , 2 � � = 0 . Ma(2006): (V) [scotogenic = caused by darkness] ω = ω c = N or Σ , χ = η = ( η + , η 0 ) , � η 0 � = 0 . N or Σ interacts with ν , but they are not Dirac mass partners, because of the exactly conserved Z 2 symmetry, under which N or Σ and ( η + , η 0 ) are odd, and all SM particles are even. Using f ( x ) = − ln x/ (1 − x ) , h αi h βi M i � [ f ( M 2 i /m 2 R ) − f ( M 2 i /m 2 ( M ν ) αβ = I )] . 16 π 2 i Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 20

  21. φ 0 φ 0 η 0 η 0 ν β ν α N i , Σ 0 i Neutrino Mass Seesaw Version 3: Recent Developments (SanCarlos08) back to start 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend