neutrino group project
play

Neutrino Group project Alex T. Emma L. Chris J. Greg H. Safi D. - PowerPoint PPT Presentation

Introduction Detectors Conclusion Neutrino Group project Alex T. Emma L. Chris J. Greg H. Safi D. December 14, 2011 Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project Introduction What are Neutrinos? Detectors


  1. Introduction Detectors Conclusion Neutrino Group project Alex T. Emma L. Chris J. Greg H. Safi D. December 14, 2011 Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  2. Introduction What are Neutrinos? Detectors Neutrino Oscillations Conclusion What are Neutrinos? • Leptons • Neutral • Weakly interacting • Disputed Small, Non-zero mass • Three ’Flavours’ Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  3. Introduction What are Neutrinos? Detectors Neutrino Oscillations Conclusion Discovery • 1930 - Theorized • Wolfgang Pauli • n 0 → p + + e − + ¯ v e • 1956 - Detected • Clyde Cowan, Frederick Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire v e + p + → n 0 + e + • ¯ Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  4. Introduction What are Neutrinos? Detectors Neutrino Oscillations Conclusion Basis Interaction Flavour Basis Mass Basis | v e � | v 1 � | v µ � | v 2 � | v τ � | v 3 � Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix       v e U e 1 U e 2 U e 3 v 1  = v µ U µ 1 U µ 2 U µ 3 v 2      v τ U τ 1 U τ 2 U τ 3 v 3 Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  5. Introduction What are Neutrinos? Detectors Neutrino Oscillations Conclusion Oscillations • Flavour Basis • Detected through interactions • Mass Basis • Mass Eigenstates • v e = α v 1 + β v 2 + γ v 3 → Av 1 + Bv 2 + Γ v 3 � = v e Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  6. Introduction What are Neutrinos? Detectors Neutrino Oscillations Conclusion CP violation • Charge-Parity Symmetry • Two possible cases: • Dirac • Equation implied the existence of antimatter • Includes most observable particles • Majorana • Particle = Antiparticle Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  7. Introduction What are Neutrinos? Detectors Neutrino Oscillations Conclusion CP violation • Complex phases in mixing matrix • Dirac case • 1 particle: 1 phase • Majorana Case • 3 particle: 3 phase Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  8. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Intro. to atmospheric neutrinos... • Cosmic ray + our atmosphere = decaying particle + neutrinos • Muon decay Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  9. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators SuperKamiokande 1998 • Cosmic ray protons + nuclei in the atmosphere = Electron + neutrinos • Detector: Cerenkov Radiation • Expectation of 2 muons per electron, measured ratio 1:3 Suggests neutrino oscillation! Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  10. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators • 1 / 2 the amount of neutrinos going upwards (eg. From the other side of the earth) • Muon neutrinos change or oscillate to another flavour neutrino • Most likely v µ → v τ , neutrino energies not detected by SuperKamiokande. • MINOS lab-based experiment, 2006, supported SuperKamiokande conclusion. Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  11. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators IMB Detector 1982-1991 • Proton Decay & neutrino observatory • Detector: Cerenkov Radiation • Can tell the direction of neutrinos • Most famous discovery: 8 × 10 58 neutrinos from Supernova 1987a Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  12. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators MACRO 1989-2000 • Gravitational Collapse • Detector: Scintillator / Streamer • Sensitivity determined by background events • Estimate neutrino energy ∼ 4 and ∼ 50 GeV • Results: v µ → v τ Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  13. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Solar Neutrinos- Come from this (You may have heard of it) • Neutrinos are produced in core • Travel time to Earth ≈ 8 minutes • Produces two hundred trillion trillion trillion neutrinos per second! • Neutrinos possess 0 − 20 MeV of energy • 91 % of solar neutrinos originate from proton - proton chain Reaction examples: Hydrogen + Hydrogen → Deuterium + Positron + Neutrino Beryllium 7 + Positron → Lithium 7 +Neutrino Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  14. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators First Detection - Homestake experiment 1969-1993 • Contains 100,000 gallons of perchloroethlyene • Located 4800 feet below ground in Homestake Gold Mine, South Dakota • First to successfully detect and count Solar Neutrinos Reaction used for detection: The Solar Neutrino Neutrino + Chlorine 37 → Problem: Electron + Argon 37 Only 30% of predicted Only detects high energy neutrinos detected neutrinos Where are the rest? Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  15. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators SAGE - Caucaus Mountains, Russia (1989-2010) Reaction used: Gallium 71 + Neutrino → Germanium + Electron • Detected low energy neutrinos • Atoms of Germanium individually counted via decay • Predicted 50 - 60% of neutrinos from Sun • Only sensitive to Electron neutrinos Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  16. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Gallex - Italy (1991-1997) • Located deep underground inside Gran Sasso • 54 cubic metre tank filled • Reaction: Neutrino + Gallium with gallium based solution 71 → Germanium + Electron • Detection threshold -233.2 • Like SAGE, only sensitive to keV Electron Neutrinos Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  17. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Kamiokande - Gifu, Japan (1985) • Located 1km underground • Water cherenkov detector - PMTs detect emitted light from neutrino reaction • 3000 tons of pure water acted as a target • Detected neutrinos from a supernova (1987) Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  18. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Superkamiokande - Gifu, Japan (1996-present) • Sequel to Kamiokande - large water cherenkov detector • Located 1000m under a • 50000 tons of pure water act mountain as a target • Results showed early • Direction of incident indication of neutrino neutrinos can be obtained oscillations Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  19. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators SNO - Creighton Mine, Sudbury, Ontario, Canada (2000-present) • Located 6800 feet underground • Heavy water cherenkov light detector (1000 tonnes of heavy water) • First to detect all three varieties of neutrino • Could have detected a Results showed: supernova in our galaxy • First clear evidence of neutrino oscillation Neutrino Problem - • Implies that neutrinos have a non zero mass SOLVED! • Flux measured agreed with Standard model Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  20. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators KamLAND • I have been studying the KamLAND neutrino detector, where neutrino oscillation was first proved. • Abstract: KamLAND measured the flux of electron neutrinos from nuclear reactors. The experiment lasted 145.1 days and recorded the ratio of Beta decay events to the expected number without disappearance. ¯ v e + p → e + n Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  21. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators The Detector Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  22. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Process • Calibration • Background radiation • Final values Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  23. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Results • 99.95 % confidence that there is some neutrino disappearance • 93 % confidence the disappearance is caused by neutrino oscillation Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

  24. Atmospheric Neutrinos Introduction Solar Neutrinos Detectors Reactor Neutrinos Conclusion Particle Accelerators Particle Accelerators Alex T., Emma L., Chris J., Greg H., Safi D. Neutrino Group project

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend