network determination based on birth death mcmc inference
play

Network determination based on birth-death MCMC inference A. - PowerPoint PPT Presentation

N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES Network determination based on birth-death MCMC inference A. Mohammadi and E. Wit February 4, 2013 N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC


  1. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES Network determination based on birth-death MCMC inference A. Mohammadi and E. Wit February 4, 2013

  2. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES W HAT IS TALK ABOUT ? Problem ◮ High-dimensional cases: p ( p − 1 ) / 2 ≫ n ◮ Bayesian approches : Not fast ◮ glasso : Sensitivity to tuning parameters Solution ◮ We proposed Bayesian method which is fast and accurate ◮ Implement to R package: BDgraph Trans-dimensional MCMC ◮ Reversible-jump MCMC ◮ Birth-Death MCMC

  3. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES Network Gaussian graphical model with respect to graph G = ( V , E ) as N p ( 0 , Σ) | K = Σ − 1 is positive definite based on G � � M G = Pairwise Markov property X i ⊥ X j | X V \{ i , j } ⇔ k ij = 0 ,

  4. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES B IRTH - DEATH PROCESS ◮ Spacial birth-death process: Preston (1976) ◮ Brith-death MCMC: Stephen (2000) in mixture models

  5. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES B IRTH - DEATH MCMC DESIGN General birth-death process ◮ Continuous Markov process ◮ Birth and death events are independent Poisson processes ◮ Time of birth or death event is exponentially distributed Birth-death process in GGM ◮ Adding new edge in birth time and deleting edge in death time

  6. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMPLE CASE

  7. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMPLE CASE

  8. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMPLE CASE

  9. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMPLE CASE

  10. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMPLE CASE

  11. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMPLE CASE

  12. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES B ALANCE CONDITION Preston (1976): Backward Kolmogorov If balance conditions are hold, process converges to unique stationary distribution.

  13. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES P ROPOSED BIRTH - DEATH MCMC ALGORITHM Proposal birth and death rates β ξ ( K ) = λ b , new link ξ = ( i , j ) b ξ ( k ξ ) p ( G − ξ , K − ξ | x ) δ ξ ( K ) = λ b , existing link ξ = ( i , j ) p ( G , K | x ) Proposal birth-death MCMC algorithm Starting with initial graph: Step 1 : (a). Calculate birth and death rates (b). Calculate waiting time, λ ( K ) = 1 / ( β ( K ) + δ ( K )) (c). Simulate type of jump, birth or death Step 2: Sampling from new precision matrix: K + ξ or K − ξ

  14. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S AMPLING BIRTH - DEATH MCMC ALGORITHM

  15. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES ◮ Birth-death MCMC algorithm for general case ...

  16. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S PECIFIC ELEMENT OF BDMCMC METHOD ◮ Prior distributions ◮ Computing death rates ◮ Sampling from precision matrix

  17. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES P ROPOSED PRIOR DISTRIBUTIONS Prior for graph ◮ Discrete Uniform ◮ Truncated Poisson according to number of links Prior for precision matrix ◮ G-Wishart: W G ( b , D ) � − 1 � p ( K | G ) ∝ | K | ( b − 2 ) / 2 exp 2 tr ( DK ) − 1 � � � | K | ( b − 2 ) / 2 exp I G ( b , D ) = 2 tr ( DK ) dK P G

  18. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES G-W ISHART DISTRIBUTION Sampling from G-Wishart distribution ◮ Accept-reject algorithm ◮ Metropolis-Hastings algorithm ◮ Block Gibbs sampler ◮ According to maximum cliques ◮ Edgewise block Gibbs sampler

  19. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES C OMPUTING DEATH RATES p ( G − ξ , K − ξ | x ) δ ξ ( K ) = p ( G , K | x ) γ b b ξ ( k ξ ) � ( b ∗ − 2 ) / 2 � | K − ξ | I G ( b , D ) − 1 � � 2tr ( D ∗ ( K − ξ − K )) = exp γ b b ξ ( | K | I G − ξ ( b , D ) Limitation Algorithm is very slow !!

  20. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES Ratio of normalizing constant � b + ν i � Γ E G [ f T ( ψ ν )] I G − ξ ( b , D ) = 2 √ π t ii t jj I G ( b , D ) 2 � b + ν i − 1 � E G − ξ [ f T ( ψ ν )] Γ 2 Plot for ratio of normalizing constants 1.20 1.15 ratio of expectation 1.10 1.05 1.00 0 50 100 150 200 250 300 number of nodes

  21. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES Death rates for high-dimensional cases � b + ν i � � ( b ∗ − 2 ) / 2 Γ � | K − ξ | 2 √ π t ii t jj 2 δ ξ ( K ) = � b + ν i − 1 � | K | Γ 2 � − 1 � 2tr ( D ∗ ( K − ξ − K )) × exp γ b b ξ ( k ξ ) R package We compile our method into BDgraph package which is available from CRAN web site

  22. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMULATION : 8 NODES N 8 ( 0 , Σ) | K = Σ − 1 ∈ P G � � M G =   1 . 5 0 0 0 0 0 . 4 1 . 5 0 0 0 0 0     1 . 5 0 0 0 0      1 . 5 0 0 0    K =   . 5 1 0 0     1 . 5 0     . 5  1    1

  23. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S OME RESULT Effect of Sample size Number of data 20 30 40 60 80 100 150 p(true graph | data) 0.018 0.067 0.121 0.2 0.22 0.35 0.43 false discovery 1 0 0 0 0 0 0 false negative 0 0 0 0 0 0 0

  24. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S OME RESULT   1 1 0 . 03 0 . 06 0 . 02 0 . 02 0 . 03 1 0 . 04 0 . 03 0 . 02 0 . 03 0 . 03 1 1     1 1 0 . 06 0 . 04 0 . 06 0 . 03       1 1 0 . 05 0 . 04 0 . 03   ˆ p ξ = .   1 1 0 . 05 0 . 13     1 1 0 . 13     1 1     1   1 . 3 0 . 6 0 0 0 0 0 0 . 5 1 . 4 0 . 5 0 0 0 0 0     1 0 . 5 0 0 0 0      1 . 2 0 . 6  0 0 0 ˆ   K = .   1 . 3 0 . 4 0 0     0 . 9 0 . 5 0     0 . 9 0 . 4     1

  25. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES S IMULATION : 120 NODES N 120 ( 0 , Σ) | K = Σ − 1 ∈ P G � � M G = , ◮ n = 1000 ≪ 7260 ◮ Priors: K ∼ W G ( 3 , I 120 ) and G ∼ TU ( all possible graphs ) ◮ 10000 iterations and 5000 iterations as burn-in Result ◮ Time 190 minutes ◮ p(true graph | data) = 0 . 41 which is most probable graph

  26. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES C ELL SIGNALING DATA Flow cytometry data with 11 proteins from Sachs et al. (2005) (Left) Result from our algorithm (Right) Result from Sachs et al (2005) Friedman et al (2008): full graph according to g-lasso

  27. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES C ONCLUSION

  28. N ETWORK B IRTH - DEATH MCMC METHOD S PECIFIC ELEMENT OF BDMCMC METHOD E XAMPLES Thanks for your attention References M OHAMMADI , A. AND E. C. W IT (2012) Efficient birth-death MCMC inference for Gaussian graphical models. arXiv preprint arXiv:1210.5371 W ANG , H. AND S. L I (2012) Efficient Gaussian graphical model determination under G-Wishart prior distributions. Electronic Journal of Statistics, 6:168-198 A TAY -K AYIS , A. AND H. M ASSAM (2005) A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models. Biometrika Trust, 92(2):317-335 PRESTON , C. J. (1976) Special birth-and-death processes. Bull. Inst. Internat. Statist., 34:1436-1462

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend