natural deduction
play

Natural Deduction Akim Demaille akim@lrde.epita.fr EPITA cole Pour - PowerPoint PPT Presentation

Natural Deduction Akim Demaille akim@lrde.epita.fr EPITA cole Pour lInformatique et les Techniques Avances June 10, 2016 Define logic [fuc, ] A. Demaille Natural Deduction 2 / 49 Natural Deduction 1 Logical Formalisms


  1. Natural Deduction Akim Demaille akim@lrde.epita.fr EPITA — École Pour l’Informatique et les Techniques Avancées June 10, 2016

  2. Define “logic” [fuc, ] A. Demaille Natural Deduction 2 / 49

  3. Natural Deduction 1 Logical Formalisms Natural Deduction 2 Additional Material 3 A. Demaille Natural Deduction 3 / 49

  4. Preamble The following slides are implicitly dedicated to classical logic. A. Demaille Natural Deduction 4 / 49

  5. Logical Formalisms Logical Formalisms 1 Syntax Proof Types Proof Systems Natural Deduction 2 Additional Material 3 A. Demaille Natural Deduction 5 / 49

  6. Syntax Logical Formalisms 1 Syntax Proof Types Proof Systems Natural Deduction 2 Additional Material 3 A. Demaille Natural Deduction 6 / 49

  7. Terminal Symbols Propositional Calculus Constants a , b , c , . . . Propositional Variables A , B , C , . . . Unary Connective ¬ Binary Connectives ∧ , ∨ , ⇒ Punctuation ( , ) , [ , ] . A. Demaille Natural Deduction 7 / 49

  8. Terminal Symbols Propositional Calculus Constants a , b , c , . . . Propositional Variables A , B , C , . . . Unary Connective ¬ Binary Connectives ∧ , ∨ , ⇒ Punctuation ( , ) , [ , ] . A. Demaille Natural Deduction 7 / 49

  9. Terminal Symbols Propositional Calculus Constants a , b , c , . . . Propositional Variables A , B , C , . . . Unary Connective ¬ Binary Connectives ∧ , ∨ , ⇒ Punctuation ( , ) , [ , ] . A. Demaille Natural Deduction 7 / 49

  10. Terminal Symbols Propositional Calculus Constants a , b , c , . . . Propositional Variables A , B , C , . . . Unary Connective ¬ Binary Connectives ∧ , ∨ , ⇒ Punctuation ( , ) , [ , ] . A. Demaille Natural Deduction 7 / 49

  11. Terminal Symbols Propositional Calculus Constants a , b , c , . . . Propositional Variables A , B , C , . . . Unary Connective ¬ Binary Connectives ∧ , ∨ , ⇒ Punctuation ( , ) , [ , ] . A. Demaille Natural Deduction 7 / 49

  12. Terminal Symbols Predicate calculus Individual Variables x , y , z , . . . Functions f , g , h , . . . , with a fixed arity Predicates P , Q , R , . . . , with a fixed arity Quantifiers ∀ , ∃ Punctuation · . A. Demaille Natural Deduction 8 / 49

  13. Terminal Symbols Predicate calculus Individual Variables x , y , z , . . . Functions f , g , h , . . . , with a fixed arity Predicates P , Q , R , . . . , with a fixed arity Quantifiers ∀ , ∃ Punctuation · . A. Demaille Natural Deduction 8 / 49

  14. Terminal Symbols Predicate calculus Individual Variables x , y , z , . . . Functions f , g , h , . . . , with a fixed arity Predicates P , Q , R , . . . , with a fixed arity Quantifiers ∀ , ∃ Punctuation · . A. Demaille Natural Deduction 8 / 49

  15. Terminal Symbols Predicate calculus Individual Variables x , y , z , . . . Functions f , g , h , . . . , with a fixed arity Predicates P , Q , R , . . . , with a fixed arity Quantifiers ∀ , ∃ Punctuation · . A. Demaille Natural Deduction 8 / 49

  16. Terminal Symbols Predicate calculus Individual Variables x , y , z , . . . Functions f , g , h , . . . , with a fixed arity Predicates P , Q , R , . . . , with a fixed arity Quantifiers ∀ , ∃ Punctuation · . A. Demaille Natural Deduction 8 / 49

  17. Propositional Formulas � formula � � propositional variable � ::= | ¬� formula � | � formula � ∧ � formula � | � formula � ∨ � formula � | � formula � ⇒ � formula � A. Demaille Natural Deduction 9 / 49

  18. Terms � term � ::= � constant � | � function � ( � term � , . . . ) With the proper arity. A. Demaille Natural Deduction 10 / 49

  19. First Order Formulas � formula � � propositional variable � ::= | ¬� formula � | � formula � ∧ � formula � | � formula � ∨ � formula � | � formula � ⇒ � formula � | � predicate � ( � term � , . . . ) | ∀� individual variable � · � formula � | ∃� individual variable � · � formula � With the proper arity. A. Demaille Natural Deduction 11 / 49

  20. Syntactic Conventions Associativity ∧ , ∨ are left-associative (unimportant) ⇒ is right-associative (very important) Precedence (increasing) 1 ∀ , ∃ 2 ⇒ 3 ∨ 4 ∧ 5 ¬ A. Demaille Natural Deduction 12 / 49

  21. Syntactic Conventions Associativity ∧ , ∨ are left-associative (unimportant) ⇒ is right-associative (very important) Precedence (increasing) 1 ∀ , ∃ 2 ⇒ 3 ∨ 4 ∧ 5 ¬ A. Demaille Natural Deduction 12 / 49

  22. Free Variables FV ( X ) = ∅ FV ( P ( x 1 , x 2 , · · · , x n )) = { x 1 , x 2 , · · · , x n } FV ( ¬ A ) = FV ( A ) FV ( A ∨ B ) = FV ( A ) ∪ FV ( B ) FV ( A ∧ B ) = FV ( A ) ∪ FV ( B ) FV ( A ⇒ B ) FV ( A ) ∪ FV ( B ) = FV ( ∀ x · A ) = FV ( A ) − { x } FV ( ∃ x · A ) FV ( A ) − { x } = A. Demaille Natural Deduction 13 / 49

  23. Proof Types Logical Formalisms 1 Syntax Proof Types Proof Systems Natural Deduction 2 Additional Material 3 A. Demaille Natural Deduction 14 / 49

  24. Different Proof Types A. Demaille Natural Deduction 15 / 49

  25. Proof Systems Logical Formalisms 1 Syntax Proof Types Proof Systems Natural Deduction 2 Additional Material 3 A. Demaille Natural Deduction 17 / 49

  26. Proof Systems Hilbertian Systems Natural Deduction Sequent Calculus Natural Deduction in Sequent Calculus A. Demaille Natural Deduction 18 / 49

  27. Proof Systems Hilbertian Systems Natural Deduction Sequent Calculus Natural Deduction in Sequent Calculus A. Demaille Natural Deduction 18 / 49

  28. Proof Systems Hilbertian Systems Natural Deduction Sequent Calculus Natural Deduction in Sequent Calculus A. Demaille Natural Deduction 18 / 49

  29. Proof Systems Hilbertian Systems Natural Deduction Sequent Calculus Natural Deduction in Sequent Calculus A. Demaille Natural Deduction 18 / 49

  30. Axioms Axioms are formulas that are considered true a priori ∀ x · x + 0 = x Axiom schemes use meta-variables (that range over a specific domain) X + Y = Y + X Axiom schemes are used when quantifiers are not welcome → XZ ( YZ ) SXYZ KXY → X Axiom schemes are used when quantifiers do not apply A ∨ ¬ A A. Demaille Natural Deduction 19 / 49

  31. Axioms Axioms are formulas that are considered true a priori ∀ x · x + 0 = x Axiom schemes use meta-variables (that range over a specific domain) X + Y = Y + X Axiom schemes are used when quantifiers are not welcome → XZ ( YZ ) SXYZ KXY → X Axiom schemes are used when quantifiers do not apply A ∨ ¬ A A. Demaille Natural Deduction 19 / 49

  32. Axioms Axioms are formulas that are considered true a priori ∀ x · x + 0 = x Axiom schemes use meta-variables (that range over a specific domain) X + Y = Y + X Axiom schemes are used when quantifiers are not welcome → XZ ( YZ ) SXYZ KXY → X Axiom schemes are used when quantifiers do not apply A ∨ ¬ A A. Demaille Natural Deduction 19 / 49

  33. Axioms Axioms are formulas that are considered true a priori ∀ x · x + 0 = x Axiom schemes use meta-variables (that range over a specific domain) X + Y = Y + X Axiom schemes are used when quantifiers are not welcome → XZ ( YZ ) SXYZ KXY → X Axiom schemes are used when quantifiers do not apply A ∨ ¬ A A. Demaille Natural Deduction 19 / 49

  34. Inference Rules · · · H 1 H 2 H n Rule name C Axiom name A A. Demaille Natural Deduction 20 / 49

  35. Logical Formalisms David Hilbert (1862–1943) A. Demaille Natural Deduction 21 / 49

  36. Hilbertian System A single inference rule: the modus ponens A A ⇒ B modus ponens B Many axioms to define the connectives A ⇒ B ⇒ A ∧ B A ∧ B ⇒ A A ∧ B ⇒ B A ⇒ A ∨ B B ⇒ A ∨ B A ∨ B ⇒ ( A ⇒ C ) ⇒ ( B ⇒ C ) ⇒ C A ⇒ B ⇒ A ( A ⇒ ( B ⇒ C )) ⇒ ( A ⇒ B ) ⇒ A ⇒ C A ∨ ¬ A A ⇒ ¬ A ⇒ B A. Demaille Natural Deduction 22 / 49

  37. Hilbertian System A single inference rule: the modus ponens A A ⇒ B modus ponens B Many axioms to define the connectives A ⇒ B ⇒ A ∧ B A ∧ B ⇒ A A ∧ B ⇒ B A ⇒ A ∨ B B ⇒ A ∨ B A ∨ B ⇒ ( A ⇒ C ) ⇒ ( B ⇒ C ) ⇒ C A ⇒ B ⇒ A ( A ⇒ ( B ⇒ C )) ⇒ ( A ⇒ B ) ⇒ A ⇒ C A ∨ ¬ A A ⇒ ¬ A ⇒ B A. Demaille Natural Deduction 22 / 49

  38. Hilbertian System A single inference rule: the modus ponens A A ⇒ B modus ponens B Many axioms to define the connectives A ⇒ B ⇒ A ∧ B A ∧ B ⇒ A A ∧ B ⇒ B A ⇒ A ∨ B B ⇒ A ∨ B A ∨ B ⇒ ( A ⇒ C ) ⇒ ( B ⇒ C ) ⇒ C A ⇒ B ⇒ A ( A ⇒ ( B ⇒ C )) ⇒ ( A ⇒ B ) ⇒ A ⇒ C ⇒ A ∨ ¬ A A ⇒ ¬ A ⇒ B A. Demaille Natural Deduction 22 / 49

  39. Hilbertian System: Prove A ⇒ A A. Demaille Natural Deduction 23 / 49

  40. Hilbertian System: Prove A ⇒ A ( A ⇒ (( A ⇒ A ) ⇒ A )) ⇒ ( A ⇒ A ⇒ A ) ⇒ A ⇒ A A ⇒ ( A ⇒ A ) ⇒ A ( A ⇒ A ⇒ A ) ⇒ A ⇒ A A ⇒ A ⇒ A A ⇒ A A. Demaille Natural Deduction 23 / 49

  41. Natural Deduction 1 Logical Formalisms 2 Natural Deduction Syntax Normalization 3 Additional Material A. Demaille Natural Deduction 24 / 49

  42. Syntax 1 Logical Formalisms 2 Natural Deduction Syntax Normalization 3 Additional Material A. Demaille Natural Deduction 25 / 49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend