n onequilibrium dynamics wi ti tie t ime dependent dmr g
play

N onequilibrium Dynamics wi ti tie T ime-Dependent DMR G Salvatore - PowerPoint PPT Presentation

N onequilibrium Dynamics wi ti tie T ime-Dependent DMR G Salvatore R. Manmana Institute for Theoretical Physics University of Gttingen A.C. Tiegel, S.R. Manmana, T. Pruschke, and A. Honecker, arXiv:1312.6044: frequency-space dynamics at


  1. N onequilibrium Dynamics wi ti tie T ime-Dependent DMR G Salvatore R. Manmana Institute for Theoretical Physics University of Göttingen • A.C. Tiegel, S.R. Manmana, T. Pruschke, and A. Honecker, arXiv:1312.6044: frequency-space dynamics at finite temperatures • F.H.L. Essler, S. Kehrein, S.R. Manmana, and N.J. Robinson, arXiv:1311.4557 (to appear in PRB): controlled integrability breaking • J. Eisert, M. van den Worm, S.R. Manmana, and M. Kastner, PRL 111 , 260401 (2013): Lieb-Robinson-Bound & long-range interactions

  2. Quantum Many-Body Sys tf m s in Nature and in ti e Lab Schrödinger equation: time dependent time independent i ~ ∂ ∂ t | ψ i = ˆ ˆ H | ψ i H | ψ i = E | ψ i ~ 2 ˆ ˆ X ~ X r 2 H = � i + V ( ~ x j ) x i , ~ 2 m i i h i,j i Quantum Magnetism of natural Minerals Synthetisized Materials: (Herbertsmithite, Azurite,...): “Spin-liquids”? High-Temperature Superconductors Low-dimensional systems Ultracold Gases (Optical Lattices): (e.g. TTF-TCNQ & further charge-transfer salts) Bose-Einstein condensates & Mott-Insulators

  3. M any-Body Sys tf ms Out-Of-Equilibrium: 1 ) Linear Respons e angle-resolved photoemission scanning-tunneling (ARPES) spectroscopy photon energy source analyser ( from www.physics.rutgers.edu/ bartgroup/ ) (from Wikipedia) ☞ electronic density of states A ( k , ω ) ☞ local density of states A ( ω )

  4. M any-Body Sys tf ms Out-Of-Equilibrium: 2 ) Highly Exci tf d Ma tf rial s F. Krausz & M. Ivanov, RMP (2009) Photo-excitation of “Light-induced Photovoltaic effects Mott insulators superconductivity” S. Wall et al., Nature Physics (2010) D. Fausti et al., Science (2011) E. Manousakis PRB (2010) Salvatore R. Manmana

  5. M any-Body Sys tf ms Out-Of-Equilibrium: 3 ) Ul ts acold Gases & Op tj cal La tu ice s Out-of-Equilibrium Collapse and Revival “Quantum Quenches” of a Bose-Einstein-Condensate ➠ Sudden change of M. Greiner et al., Nature (2002) parameters U 0 ➟ U thermal state in 3D, not in 1D Prepared states, Expansions ➠ “Release” atoms, remove a ‘Quantum Newton Cradle’ trapping potential T. Kinoshita et al., Nature (2006) ➠ Relaxation behavior ➠ Time scales ➠ Novel (metastable) states?

  6. E xample Quantum Simula tp rs: P olar Molecules [A.V. Gorshkov, S.R. Manmana et al., PRL & PRA (2011)] polar Molecules (e.g. KRb) in optical lattices: 2 Rotational states ⇔ two Spinstates dipolar interaction Effective Model:  J ⊥ � 1 h i X X c † i S − j + S − S + i S + + J z S z i S z n i S z j + S z � � � � H = − t j, σ c j +1 , σ + h.c. j + V n i n j + W i n j + j | i − j | 3 2 j, σ i,j J -W/8 W t: nearest-neighbor hopping V: Coulomb-repulsion (long-range) W: density-spin-interaction (long-ranged) J: Heisenberg coupling (anisotropic, long-ranged) V t V ➥ generalized t-J model with dipolar long-range interactions

  7. E xample Op tj cal La tu ices: P olar Molecules [A.V. Gorshkov, S.R. Manmana et al., PRL & PRA (2011)] 2 basic observations: H 0 = B N 2 − d 0 ~ polar molecules are rigid rotors, e.g., in electric field: E dipolar, long-ranged interactions: level scheme for a rigid rotor in a field: Idea: project dipolar operator onto two states ➠ effective S=1/2 system

  8. P olar molecules on op tj cal la tu ices: e ff ec tj ve model s [A.V. Gorshkov, S.R. Manmana et al., PRL & PRA (2011)] level scheme for energies in microwaves a rigid rotor in a field: electric field: ➠ dressed states: (II) (I) More general: project dipolar operator onto two dressed states ➠ tunable parameters [ ⇥ m 0 | d | m 0 ⇤ � ⇥ m 1 | d | m 1 ⇤ ] 2 “Ising” = J z useful choice of coefficients: 2 ⇥ m 1 | d | m 0 ⇤ 2 = “spin flip” J ⊥ (depend on details 1 4 [ ⇥ m 0 | d | m 0 ⇤ + ⇥ m 1 | d | m 1 ⇤ ] 2 V = “density interaction” of dressed states 1 ⇥ m 0 | d | m 0 ⇤ 2 � ⇥ m 1 | d | m 1 ⇤ 2 ⇤ {|m 0 >,|m 1 >} ) ⇥ “anisotropic interaction” = W 2 (II): Arbitrary ratio between all coefficients (I): Simplest case, leads to J z = V = W = 0 ➠ Future research ➠ This talk (III): Beyond S=1/2, spatial anisotropies,topological order: S.R.M. et al., PRB (rapid comm.) 87, 081106(R) (2013); A.V. Gorshkov, K. Hazzard & A.M. Rey, arXiv:1301.5636 (2013)

  9. E xample Ul ts acold Gases: I ons in a Tra p 9 Be + ions in a Penning trap (NIST Boulder) 171 Yb + ions (JQI/NIST Maryland) [J.W. Britton et al., Nature 484 , 489 (2012)] [K. Kim et al., Nature 465 , 590 (2010); R. Islam et al., Nature Comm. 2 ,377 (2011); NJP and more...] Realization of Ising models with transverse field on variety of lattices: Interactions ∼ 1/r α

  10. N umerical Me ti ods for Many-Body Sys tf ms: C ha lm enge s I) Dynamical spectral functions: resolution, finite temperatures II) ‘Highly excited systems’: long times, time evolution at finite temperatures III) Recent development quantum simulators: long-range interactions Further important challenges: D>1, dissipation, infinite system size, ...

  11. “N umerica lm y Exact Dynamics ” : E xact Diagonaliza tj o n Direct approach: No limitations: • arbitrary long times • accuracy (machine precision) • arbitrary geometry • independent on details of system or initial state Bad: ➠ Need the full spectrum...difficult ☹

  12. “N umerica lm y Exact Dynamics ” : Itf ra tj ve Diagonaliza tj o n Lanczos procedure: H | v n i � a n | v n i � b 2 | v n +1 i n | v n − 1 i = (Krylov space method) K. Lánczos (1950) a n = h v n | H | v n i n +1 = h v n +1 | v n +1 i b 2 , , b 0 = 0 h v n | v n i h v n | v n i   a 0 b 1 b 1 a 1 b 2 0   Tridiagonalization of   ...   b 2 a 2 T n =   Hamiltonian matrix:   ... ...   0 b n   b n a n Projection of time evolution operator: T.J. Park and J.C. Light, J. Chem. Phys (1986) Error estimate: M. Hochbruck and C. Lubich, SIAM (1997) Larger systems possible Usually n<20 is sufficient Pro’s/Con’s similar to ‘full diagonalization’ ➠ Need to store n vectors with dimension of H ☹

  13. “N umerica lm y Exact Dynamics ” : Ti e DMR G S.R. White, PRL (1992); U. Schollwöck, RMP (2005)/Ann. Phys. (2011); R.M. Noack & S.R. Manmana, AIP (2005) A B l Obtain ground state of finite, small lattice (e.g., using Lanczos) l Reduced density matrix of subsystem (“system block”) ➠ Schmidt decomposition (1907) dim H m Approximation: X X | ψ i = w j | α i j | β i j ⇡ w j | α i j | β i j m ⌧ dim H j =1 j =1 | α i j , | β i j : Eigenstates of reduced density matrices of A or B typically (1D) m ∼ 1000, error (discarded weight) ∼ 10 -9 X w 2 j log w 2 ➥ central quantity: entanglement entropy S = − j j The larger the entanglement, the larger m for a desired accuracy. • Problematic for D > 1 (‘area law of entanglement’) • Entanglement grows with time - inhibits (very) long times

  14. “N umerica lm y Exact Dynamics ” : Ti e DMR G Iterative Procedure: [Webpage E. Jeckelmann]

  15. “N umerica lm y Exact Dynamics ” : Ti e adap tj ve t-DMR G Basic idea: − Approximate time evolution operator • Suzuki-Trotter decomposition [Vidal (2003/2004); S.R. White & A. Feiguin (2004); A. Daley et al. (2004)] • Lanczos projection [P. Schmitteckert (2004); S.R. Manmana et al. (2005)] U − Adapt basis of density-matrix eigenvectors at each time step Trotter approach (n.n. interactions): Lanczos approach (arbitrary geometry)

  16. “N umerica lm y Exact Dynamics ” : M a ts ix Product Sta tfs U. Schollwöck, Ann. Phys. (2011) Matrix product state (MPS) representation of wave functions: local complex-valued matrix ➠ underlying structure of the wave function in the DMRG Convergence: optimize M-matrices via variational principle Matrix product operator (MPO) representation of operators:

  17. L inear Response Dynamics at T>0

  18. L inear Response: D ynamical correla tj on fv nc tj on s ☞ time-dependent perturbation H ( t ) = H 0 − h A e i ω t A ☞ linear response: � ∞ ∞ ∞ � d � � � d t e i ω t � T B ( t ) A � 0 = � � Ψ 0 | B | n � � n | A | Ψ 0 � e i t ( ω − ( E n − E 0 )) � d t � B ( t ) � = d t � d h A � n � −∞ h A =0 −∞ −∞ � = 2 π � Ψ 0 | B | n � � n | A | Ψ 0 � δ ( ω � ( E n � E 0 )) n with H 0 | n � = E n | n � ☞ express via Green’s functions G A ( z ) = � Ψ 0 | A † ( z � H ) − 1 A | Ψ 0 � C A † ,A ( ω ) = Im G A ( ω + i η + E 0 ) ,

  19. D ynamical proper tj es of quantum magnets: E SR on Cu-PM in magne tj c fi eld s Copper pyrimidine dinatrate: [S. Zvyagin et al., PRB(R) (2011)] (Quasi-)1D Heisenberg AFM, described by effect of staggered g-tensor + DM interaction ESR spectrum in magnetic field: DMRG results

  20. F ini tf tf mperature me ti ods: p uri fi ca tj on wi ti ma ts ix product sta tfs ☞ Compute thermal density matrix via a pure state in an extended system: [U. Schollwöck, Annals of Physics (2011)] | Ψ T i = e − ( H P ⊗ I Q ) / (2 T ) h i ⌦ L j =1 | rung � singlet i j ) % T = e − H/T = Tr Q | Ψ T i h Ψ T | ☞ Real time evolution at finite temperature: | Ψ T i ( t ) = e − i ( H P ⊗ U Q ) t | Ψ T i ) G A ( T, t ) Fourier ) G A ( T, ω ) Problem: reach long times for large systems Ways out: linear prediction, backward time evolution in Q [T. Barthel, U. Schollwöck & S.R. White, PRB (2009); C. Karrasch, J.H. Bardarson & J.E. Moore, PRL (2012)]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend