n a n o s c a l e s s i l i c o n b a s e d n a n o s c a
play

N a n o s c a l e S S i l i c o n B a s e d N - PowerPoint PPT Presentation

N a n o s c a l e S S i l i c o n B a s e d N a n o s c a l e i l i c o n B a s e d N o n v o l a t i l e M e mo r y N o n v o l a t i l e M e mo r y C h u n g w o o K


  1. N a n o s c a l e S S i l i c o n B a s e d N a n o s c a l e i l i c o n B a s e d N o n v o l a t i l e M e mo r y N o n v o l a t i l e M e mo r y C h u n g w o o K i m, P h . D . cw_kim@samsung.com

  2. Acknowledgements Acknowledgements Collaboration C o r n e l l U n i v e r s i t y , U S A S e o u l N a n t i o n a l U n i v e r s i t y ( S N U ) P r o f . S a n d i p T i w a r i P r o f . P a r k , B y u n g - G o o K I n s t i t u t e o f S e mi c o n d u c t o r P h y s i c s , R u s s i a K o r e a I n s t i t u t e f o r A d v a n c e d S t u d y P r o f . V l r a d mi r G r i t s e n k o ( K I A S ) P r o f . K i m, D a e M a n n Funding K w a n g j u I n s t i t u t e o f S c i e n c e a n d T e r a - l e v e l N a n o d e v i c e s T e c h n o l o g y ( K J I S T ) 2 1 s t C e n t u r y F r o n t i e r R & D P r o g r a m, M i n i s t r y o f S c i e n c e a n d T e c h n o l o g y P r o f . H w a n g , H y u n s a n g S E C a n d S A I T S u n g k y u n k w a n U n i v e r s i t y P r o f . C h u n g I l s u b ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  3. Outline Outline � Introduction � Current research status – Nano fabrication Process • Nanoscale patterning • SiN thin film • Si Nanoparticle – Nano devices • Nanoscale SONOS memory • Vertical channel memory � Future Work ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  4. Environment of Memory Environment of Memory � New application, unification – Diversfied from PC into digital application – Increasing capacity of voice, motion picture information ➙ Need higher density of memory – Increasing demand for unified memory � Uncertainty of DRAM & Flash Memory scalability � Memory Market: $35 billion (2001), $72 billion (2010), 8.3% increase/year Game Settop Player box Digital TV PDA HHP Internet PC ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  5. Flash Memory Roadmap Flash Memory Roadmap ( S o u r c e : I T R S 2 0 0 1 ) nm 180 Unit Cell Develop. Stage 64-512M Production 150 Feature Size 128-512M 130 128M-1G 256M-1G Research Stage 100 256M-2G Scale limit ? 512M-4G 512M-4G 70 2G-16G 50 Uncertain Stage 4G-64G 30 10 1995 2000 2005 2010 2015 Year ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  6. Flash Technology Requirements Flash Technology Requirements ( S o u r c e : I T R S 2 0 0 1 ) Year of Production 2001 2002 2003 2004 2005 2006 2007 Flash tech. Node, F[nm] 150 130 115 100 90 80 70 NOR highest W/E Voltage[V] 8-10 8-10 8-10 8-10 7-9 7-9 7-9 NAND highest W/E Voltage[V] 19-21 18-20 18-20 18-20 18-20 17-19 17-19 NOR tunnel dielectric thickness[nm] 9.5-10.5 9.5-10 9-10 9-10 8.5-9.5 8.5-9.5 8.5-9.5 NAND tunnel dielectric thickness[nm] 8.5-9.5 8.5-9 8-9 8-9 8-9 7.5-8 7.5-8 NOR interpoly dielectric thickness[nm] 13-15 12-14 11-13 11-13 10-12 9-11 9-11 NAND interpoly dielectric thickness[nm] 14-16 13-15 12-14 12-14 12-14 11-13 10-12 참고자료 : ITRS 2001 Solutions Exist Solutions are Known Solutions are NOT Known ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  7. Problems of conventional technologies � What’s the limits of flash scaling ? Stack Floating poly Active (STI) ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  8. Discrete traps Discrete traps Floating gate Discrete traps Control Gate Blocking oxide Control Gate Overcome Overcome e e e e Blocking oxide e e e e e e e e e e Tunnel Oxide Tunnel Oxide n+ n+ n+ n+ p-well p-well 기존 Flash memory SONOS Memory ☞ Discrete traps (SiN traps or Nanocrystal) * SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  9. Motivation for SONOS Motivation for SONOS G a t e T r a p s i t e s 30nm 30 nm S D p - S i US Patent # 6313503 (2001.11.6) < Advantages > • Compatibility of SONOS with CMOS with the use of thin nitride • Lower programming voltage • Smaller dimension capability than FG EEPROM • Longer retention & low defect induced tunneling leakage (Nitride instead of poly Si ) • Higher programming speed (depends on ONO thickness) ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  10. Comparison of Memory Technologies Comparison of Memory Technologies FRAM MRAM PRAM SONOS Cell size 8~25 F 2 8~9 F 2 6 F 2 4~10 F 2 Read time 30~200 ns 10~100 ns 10~100 ns 20~120 ns Write time 1 µ s ~ 1 ms 30 ns 10~15 ns 10~100 ns > 10 년 > 10 년 > 10 년 >10 년 Retention Endurance > 10E12 > 1E13 > 10E13 > 1E5 Current/Power Low High High Low Cost High High Low Low Process Special Special Special CMOS Etching process Etching process Power Thin Oxide film Uniform thin films Issues Cost consumption Faster P/E time Cost Retention, Fatigue ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  11. SONOS Memory Development SONOS Memory Development 130 nm 130 nm C h a n n e l L e n g t h 70 nm 70 nm Source Gate 30 nm 30 nm Drain 70nm 2 0 0 1 2 0 0 2 2 0 0 3 ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  12. Nano Lithography Lithography Nano 21 nm 2 0 n m 6 0 n m Positive Resist : PMMA 32 nm Sidewall Patterning Negative Resist : Calixarene ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  13. Si Nanoparticle Fabrication by Aerosol Laser Ablation Fabrication by Aerosol Laser Ablation Si Nanoparticle 4 6x10 3 ) Concentration (/cm 4 5x10 4 4x10 • D <10nm 4 3x10 • ρ ~ 1 × 10 11 /cm 2 4 2x10 4 1x10 0 0 10 20 30 40 50 60 70 80 Nanoparticle Size (nm) 5nm 5nm ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  14. 30nm SONOS Memory by SWP nm SONOS Memory by SWP 30 3.0 ONO=23/120/45 Å 2.5 Threshold Voltage [V] 2.0 Vg=10 1.5 1.0 0.5 Vg=-10 0.0 Vg=-10/Vd=1 -0.5 Vg=-10/Vd=2 -1.0 Vg=-10/Vd=3 -1.5 Vg=-10/Vd=4 -2.0 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 10 10 10 10 10 10 10 10 10 10 10 Write/Erase Time [Sec] Key Features of SONOS Cell � Memory Node Size: 30 x 30 nm2 � Write/ Erase Voltage: <10V � Write/Erase Time: 1 msec � Endurance: >10 6 cycles � Retention = 1year @T=85 ℃ ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  15. Key Characteristics of SONOS Memory Key Characteristics of SONOS Memory 3 3.60E-007 1.0V ONO=23/120/45 Å 3.20E-007 Drain Current [A] 0.8V 2 0.6V 2.80E-007 1.4 [V] 2.40E-007 1 A t 85C Vth [V] 0.4V 2.00E-007 @ Program state @ Erase state 1.60E-007 0 0.2V 1.20E-007 -1 8.00E-008 V GS =0V 4.00E-008 -2 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 0.00E+000 8 10 0.0 0.2 0.4 0.6 0.8 1.0 Time [sec] Vds [V] 1.5 1E-6 W/L=30nm/30nm V DS =1V 1E-7 ONO=23/120/45 A 1.0 Drain Current [A] 1E-8 V DS =0.1V 1E-9 0.5 Vth (V) Program m ed @ 10V/1m s 1E-10 Erased @ -10V/10m s DIBL = 105mV 0.0 1E-11 S.S = 89mV/dec V th =-0.05V 1E-12 -0.5 1E-13 1E-14 -1.0 -1.0 -0.5 0.0 0.5 1.0 0 1 2 3 4 5 6 10 10 10 10 10 10 10 Vgs [V] C ycles (num ber) ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  16. SONOS Memory by E-beam Lithography SONOS Memory by E-beam Lithography Drain Gate Source SONOS Cell by E-beam Lithography W/L : 33nm / 46nm ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  17. ONO layer TEM & AES Analysis ONO layer TEM & AES Analysis 100 80 Si N SiO 2 =90Å Relative ACP(% ) O Si 3 N 4 = 70Å 60 SiO 2 = 20Å 40 20 20Å / 70Å / 90Å 0 0 3000 6000 9000 12000 15000 18000 Sputter Time [sec.] • TEM of the ONO (2 nm/7 nm/9 nm) stack • Auger profile showing the stoichiometric of ONO layer. ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

  18. Program & Erase Characterisics Characterisics Program & Erase 3.0 |9V| 2.8 2.8 |9V| |10V| 2.6 2.6 |10V| |11V| 2.4 2.4 |11V| |12V| 2.2 2.2 |12V| |13V| 2.0 2.0 Threshold Voltage[V] |13V| Threshold Voltage[V] 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -0.2 -0.2 -0.4 -0.4 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 1E-7 1E-6 1E-5 1E-4 1E-3 0.01 0.1 1 Write Time[sec] Erase Time[sec] � ∆ Vth ~ 2.4V � ∆ Vth ~ 2.4V � Trapped Charge density = 4.1 ~ 5.9 x 10 12 cm –2 � Trapped Charge density = 4.1 ~ 5.9 x 10 12 cm –2 � No. of e - = 61 ~ 88 for 33nm x 46nm node size � No. of e - = 61 ~ 88 for 33nm x 46nm node size ADVANCED INSTITUTE C.W. Kim, KOREA-US Nano Forum, Oct. 14, 2003 OF TECHNOLOGY

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend