multi domain bivariate spectral local linearisation
play

Multi-domain Bivariate Spectral Local Linearisation method for - PowerPoint PPT Presentation

Multi-domain Bivariate Spectral Local Linearisation method for solving non-similar boundary layer partial differential equations M AGAGULA V USI M PENDULO Supervisors: Prof. S.S. Motsa & Prof. P. Sibanda The 40 th South African Symposium of


  1. Multi-domain Bivariate Spectral Local Linearisation method for solving non-similar boundary layer partial differential equations M AGAGULA V USI M PENDULO Supervisors: Prof. S.S. Motsa & Prof. P. Sibanda The 40 th South African Symposium of Numerical and Applied Mathematics 22 - 24 March 2016 Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 1 / 16

  2. Overview A IM 1 S OLUTION P ROCEDURE 2 R ESULTS AND D ISCUSSION 3 C ONCLUSION & F UTURE R ESEARCH D IRECTION 4 R EFERENCES 5 Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 2 / 16

  3. A IM Aim & Objectives Aim To present an extension of the Bivariate Spectral Local Linearisation Method (BSLLM)[1] for solving non-similar nonlinear PDEs over large time intervals . BSLLM uses Chebyshev-Gauss-Lobbatto points (see [3, 4]) Drawback of BSLLM - accuracy deteriorates over large time intervals . New approach termed - Multi-domain Bivariate Spectral Local Linearisation Method (MD-BSLLM) Objectives Solve non-linear non-similar boundary layer equations over a large time domain using the MD-BSLLM. Validate the results using a series solution approach. Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 3 / 16

  4. S OLUTION P ROCEDURE Solution Method The solution approach involves Domain decomposition linearisation and decoupling bivariate interpolation. pseudo-spectral approximation Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 4 / 16

  5. S OLUTION P ROCEDURE Numerical Experiment � ∂ f � 2 ∂ 3 f 4 ( n + 3 ) f ∂ 2 f + ζ ∂ 2 f ∂η 3 + 1 ∂η 2 − 1 2 ( n + 1 ) ∂η 2 + ( 1 − w ) g + wh ∂η � ∂ f ∂ζ∂η − ∂ 2 f ∂ 2 f � = 1 ∂ f 4 ( 1 − n ) ζ , (1) ∂η ∂η 2 ∂ζ � ∂ f ∂ 2 g � 1 ∂η 2 + 1 4 ( n + 3 ) f ∂ g ∂η + ζ ∂ g ∂η = 1 ∂ g ∂ζ − ∂ g ∂ f 4 ( 1 − n ) ζ , (2) Pr ∂η ∂η ∂ζ � ∂ f ∂ 2 h 4 ( n + 3 ) f ∂ h ∂η + ζ ∂ h ∂ h ∂ζ − ∂ h ∂ f � 1 ∂η 2 + 1 ∂η = 1 4 ( 1 − n ) ζ , (3) Sc ∂η ∂η ∂ζ subject to ∂ f ∂ f f ( ζ, 0 ) = 0 , ∂η ( ζ, 0 ) = 0 , g ( ζ, 0 ) = h ( ζ, 0 ) = 1 , ∂η ( ζ, ∞ ) = g ( ζ, ∞ ) = h ( ζ, ∞ ) = 0 . Formulated and Solved by Hussain et.al. [2] using finite-difference based Keller-box technique Results were validated using Series Solutions , for small and large ζ Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 5 / 16

  6. S OLUTION P ROCEDURE Domain Decomposition Γ p Γ 1 Γ 2 Γ 3 Γ l ζ 0 ζ 1 ζ 2 ζ 3 ζ l − 1 ζ l ζ p − 1 ζ p ζ l − 1 ζ l ζ ( l ) ζ ( l ) ζ ( l ) ζ ( l ) ζ ( l ) s 0 1 2 s − 1 Figure: Multi-domain Grid The patching condition requires that f ( l ) ( η, ζ l − 1 ) = f ( l − 1 ) ( η, ζ l − 1 ) , η ∈ [ a , b ] , (4) where f ( l ) ( η, ζ ) denotes the solution of equation (2) at each sub-interval Γ l Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 6 / 16

  7. S OLUTION P ROCEDURE Linearisation and Decoupling The PDEs are linearised using the quasi-linearisation method . an iterative procedure based on the Taylor-series expansion about the previous estimates of the solution. Applying the quasi-linearisation method on one function at a time, results in three decoupled linear PDEs . In each sub-interval [ ζ l − 1 , ζ l ] , these decoupled linear PDEs can be solved iteratively in a sequential manner until the desired solution is obtained. ∂ 3 f ( l ) ∂ 2 f ( l ) ∂ f ( l ) ∂ f ( l ) ∂ f ′ ( l ) r + 1 r + 1 r + 1 + β 3 , r f ( l ) r + 1 r + 1 = R ( l ) β 0 , r + β 1 , r + β 2 , r r + 1 + β 4 , r + β 5 , r f , r , (5) ∂η 3 ∂η 2 ∂η ∂ξ ∂ξ ∂ 2 g ( l ) ∂ g ( l ) ∂ g ( l ) + σ 3 , r g ( l ) r + 1 r + 1 r + 1 = R ( l ) + σ 2 , r r + 1 + σ 4 , r σ 1 , r g , r , (6) ∂η 2 ∂η ∂ξ ∂ 2 h ( l ) ∂ h ( l ) ∂ h ( l ) r + 1 r + 1 + ω 3 , r h ( l ) r + 1 = R ( l ) ω 1 , r + ω 2 , r r + 1 + ω 4 , r h , r , (7) ∂η 2 ∂η ∂ξ Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 7 / 16

  8. S OLUTION P ROCEDURE Pseudo-spectral Approximation Assume that the solution at each sub-interval Γ l , denoted by f ( l ) ( η, ζ ) , can be approximated by a bivariate Lagrange interpolation polynomial of the form N x N t � � f ( l ) ( η, ζ ) ≈ f ( l ) ( η i , ζ j ) L i ( η ) L j ( ζ ) . (8) i = 0 j = 0 Transpiration parameter derivative values are computed at the grid points ( η i , ζ j ) : � N t � N t ∂ f ( l ) � � � 2 2 � d jv f ( l ) ( η j , ζ v ) = � d jv F ( l ) � = (9) � v ∂ζ ζ l − ζ l − 1 ζ l − ζ l − 1 � ( η i ,ζ j ) v = 0 v = 0 The n th order space derivative is defined as � 2 � 2 N x ∂ n f ( l ) � n � n � � D n F ( l ) � D n i ρ f ( l ) ( η ρ , ζ j ) = = j , j = 0 , 1 , 2 , . . . , N t , (10) � ∂η n η ∞ η ∞ � ( η i ,ζ j ) ρ = 0 where the vector F ( l ) is defined as j F ( l ) = [ f ( l ) ( η 0 , ζ j ) , f ( l ) ( η 1 , ζ j ) , . . . , f ( l ) ( η N x , ζ j )] T . (11) j Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 8 / 16

  9. S OLUTION P ROCEDURE Pseudo-spectral Approximation Substituting equations (9) and (10) into equation (5), we get N t N t � β 0 , r D 3 + β β 1 , r D 2 + β � F ( l ) � d jv F ( l ) � d jv DF ( l ) r + 1 , v = R ( l ) β 2 , r D + β r + 1 , j + β r + 1 , v + β β β β β β 3 , r β β β 4 , r β β 5 , r f , r , (12) v = 0 v = 0 for j = 0 , 1 , 2 , . . . , N t . The patching condition requires that f ( l ) r + 1 ( η i , ζ ( l − 1 , j ) ) = f ( l − 1 ) r + 1 ( η i , ζ ( l − 1 , j ) ) , η ∈ [ a , b ] , (13) The initial unsteady solution of equation (5) when ζ = 0 corresponds to t = t N t = − 1. Equation (12) is evaluated for j = 0 , 1 , · · · , N t − 1 N t − 1 N t − 1 � β 0 , r D 3 + β β 1 , r D 2 + β � F ( l ) d jv F ( l ) d jv DF ( l ) R ( l ) � � β β β β β 2 , r D + β β 3 , r β r + 1 , j + β β β 4 , r r + 1 , v + β β β 5 , r r + 1 , v = R R 1 , j , (14) v = 0 v = 0 and R ( l ) 1 , j = R ( l ) β 4 , r d jN t F ( l ) β 5 , r d jN t DF ( l ) R R f , r − β β N t − β β N t . Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 9 / 16

  10. S OLUTION P ROCEDURE Imposing boundary conditions for j = 0 , 1 , · · · , N t − 1, equation (14) can be expressed as the following N t ( N x + 1 ) × N t ( N x + 1 ) matrix system R ( l ) F ( l )     R R  · · ·  A 0 , 0 A 0 , 1 A 0 , N t − 1 0 1 , 0 F ( l ) R ( l ) · · · A 1 , 0 A 1 , 1 A 1 , N t − 1 R R       1 1 , 1     = , (15)  . . .  ... . .     . . . .   . . . .  .    .       A N t − 1 , 0 A N t − 1 , 1 · · · A N t − 1 , N t − 1 F ( l ) R ( l ) R R N t − 1 1 , N t − 1 where β 0 , r D 3 + β β 1 , r D 2 + β A i , i = β β β β 2 , r D + β β β β 3 , r I + β β β 4 , r d ii I + β β β 5 , r d ii D (16) A i , j = β β β 4 , r d ij I + β β β 5 , r d ij D , when i � = j , (17) Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 10 / 16

  11. R ESULTS AND D ISCUSSION Results Comparison of Multi-domain bivariate spectral local linearisation solution for the skin friction against the series solution for large ζ . MD-BSLLM Series Solution for large ζ f ′′ ( 0 , ζ ) f ′′ ( 0 , ζ ) ζ 5 0.3088214 0.3088214 10 0.1547399 0.1547399 15 0.1031717 0.1031717 20 0.0773803 0.0773803 25 0.0619045 0.0619045 30 0.0515872 0.0515872 35 0.0442176 0.0442176 40 0.0386905 0.0386905 Table: N x = 60, N t = 5, p = 20 Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 11 / 16

  12. R ESULTS AND D ISCUSSION Results Comparison of Multi-domain bivariate spectral local linearisation solution for the Sherwood number against the series solution for large ζ MD-BSLLM Series Solution for large ζ − h ′ ( 0 , ζ ) − h ′ ( 0 , ζ ) ζ 5 3.0018658 3.0018658 10 6.0002332 6.0002332 15 9.0000691 9.0000691 20 12.0000292 12.0000292 25 15.0000149 15.0000149 30 18.0000086 18.0000086 35 21.0000054 21.0000054 40 24.0000036 24.0000036 Table: N x = 60, N t = 5, p = 20 Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 12 / 16

  13. R ESULTS AND D ISCUSSION Results Comparison of Multi-domain bivariate spectral local linearisation solution for the Nusselt number against the series solution for large ζ MD-BSLLM Series Solution for large ζ ζ − g ′ ( 0 , ζ ) − g ′ ( 0 , ζ ) 5 3.5018961 3.5018961 10 7.0002370 7.0002370 15 10.5000702 10.5000702 20 14.0000296 14.0000296 25 17.5000152 17.5000152 30 21.0000088 21.0000088 35 24.5000055 24.5000055 40 28.0000037 28.0000037 Table: N x = 60, N t = 5, P = 20 Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 13 / 16

  14. C ONCLUSION & F UTURE R ESEARCH D IRECTION Conclusion The MD-BSLLM method can be used to solve non-linear non-similar boundary layer equations over a large time domain. We were able to validate the results using a series solution approach. Future Research Direction Solve different types of NPDEs arising from Physics, Mathematical Biology, etc. Vusi Magagula Multi-domain BSLLM 22 - 24 March 2016 14 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend