mu multip ltiple le
play

Mu Multip ltiple le Int Integ egrals rals Double Integrals: - PowerPoint PPT Presentation

Mu Multip ltiple le Int Integ egrals rals Double Integrals: y d b d x b f x y dydx ( , ) f x y dy dx ( , ) a c x a y c Important properties of


  1. Mu Multip ltiple le Int Integ egrals rals

  2. Double Integrals:     y d b d x b       f x y dydx ( , ) f x y dy dx ( , )       a c x a y c Important properties of the double integral:        , , a f x y dA a f x y dA R                 f x y , g x y , dA f x y dA , g x y dA ,   R R R            f x y dx dy , f x y dx dy , f x y dx dy , R R R 1 2

  3. Example 2 3  2 Evaluate the iterated integral: x ydxdy 1 0    y 2 2 3 3    Solution:  2 2   x ydxdy x ydx dy    1 0 y 1 0 3   2 2 3 x     y   dy 9 ydy   3 1 1 0 2   2 y 27     9   2 2 1

  4. Evaluating Double Integrals over General Regions         h y d g x 2 b 2                 f ( , x y ) dA f x y dx , dy f ( , x y dA ) f x y , dy dx             D c h y   D a g x 1 1

  5. Example   ( 2 ) D x y dA Evaluate  2   2 D y : 2 x and y 1 x . Solution:  2 1 1 x       ( x 2 ) y dA ( x 2 y dy ) dx D   2 x 1 y 2 x  2 1 x 1      2 xy y dx    2 1 2 x 1 32        2 3 4 (1 x 2 x x 3 x ) dx 15  1

  6. Example 2 1    2 y e dy dx Evaluate 0 x /2 Solution:     D y : x /2, y 1, x 2, x 0. y y  1 2 y 2 1 1  2  2     y  y e dy dx e dx dy  y x / 2 0 / 2 0 0 x x  1 x 2 y   x   2 2   y   x e dy    x 0 0 1 2 1      2 1     y        y 1     2 y e dy e e 1 1     e 0 0

  7. The Double Integral in Polar Coordinate:     x r cos y r sin  rdrd    2 2 dA x y r

  8. Example   2 (3 x 4 y ) dA in the upper half-plane Evaluate D 2  2  2  2  bounded by the circles D x : y 1 and x y 4. Solution:  2          2 2 2 (3 x 4 y ) dA (3 cos r 4 r sin ) rdrd R    0 r 1  2        2 3 2 (3 r cos 4 r sin ) drd    0 r 1   2      3 4 2 ( cos sin ) r r d 1 0    15 15               2 (7cos 15sin ) d (7cos (1 cos2 )) d 2 2 0 0

  9. Applications of Double Integrals: (1) Calculating the area of a plane region:   A dA D (2) Calculating the Volumes:   V f x y dA ( , ) . D

  10. Example Calculate the area of a region bounded the curves:   2  y 2 x , y x . Solution:  2 1 2 x 1  2        2 x   A dA dy dx y dx x   2 x 2 D 1   1   3 2 x x        2   2 x x dx 2 x   3 2     2 2 1 1 8 4 27        2 4 3 2 3 2 6

  11. Example Calculate the volume of a solid bounded by the surfaces:       x 0, y 0, x y z 1, z 0. Solution:         V f x y dA ( , ) 1 x y dA D D  1 1 x        1 x y dydx 0 0  1 x     2 1 1  2 1 x y                 1 x y dx 1 x 1 x dx   2 2   0 0 0 1       2 3 1   1 x 1 x 1       dx    2 6 6   0 0

  12. Example Find the volume of the solid bounded by the paraboloid:   2  2  1 , 0. z x y z Solution:       2 2 V f x y dA ( , ) (1 x y ) dA D D  2 1  2 1        2    (1 ) 3 r rdrd d ( r r dr ) 0 0 0 0 1     2 4 r r    2     2 4 2 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend