mr edf calculations of odd even nuclei
play

MR-EDF calculations of odd-even nuclei Benjamin Bally 1 , B. Avez 1 , - PowerPoint PPT Presentation

MR-EDF calculations of odd-even nuclei Benjamin Bally 1 , B. Avez 1 , M. Bender 1 and P.-H. Heenen 2 1 Universit e Bordeaux 1; CNRS/IN2P3; Centre dEtudes Nucl eaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175


  1. MR-EDF calculations of odd-even nuclei Benjamin Bally 1 , B. Avez 1 , M. Bender 1 and P.-H. Heenen 2 1 Universit´ e Bordeaux 1; CNRS/IN2P3; Centre d’Etudes Nucl´ eaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan, France 2 Service de Physique Nucl´ eaire Th´ eorique, Universit´ e Libre de Bruxelles, C.P. 229, B-1050 Bruxelles, Belgium B. Bally MR-EDF calculations of odd-even nuclei

  2. Introduction ◮ Treatment of even-even and odd-even nuclei on the same footing. ◮ Particle number and angular momentum restored GCM of cranked triaxial quasiparticle states. ◮ Motivations : • Odd-A nuclei represent half of the chart of nuclides. • Coupling of single particle and shape degrees of freedom. • Analysis of signatures for shell structure (separation energies, g factors, spectroscopic quadrupole moments, ...). • Analysis of the interplay of pairing correlations and fluctuations in shape degrees of freedom for the odd-even mass staggering. • Study of coexistence phenomena (shape, single-particle levels). B. Bally MR-EDF calculations of odd-even nuclei

  3. Theoritical model B. Bally MR-EDF calculations of odd-even nuclei

  4. Philosophy of the approach ◮ Energy Density Functional : E [ ρ, κ, κ ∗ ] � Ψ L | c † � Ψ L | c † i c † j c i | Ψ R � RL = j | Ψ R � � Ψ L | c j c i | Ψ R � κ ∗ ρ LR ij = κ LR ij = � Ψ L | Ψ R � � Ψ L | Ψ R � ij � Ψ L | Ψ R � ◮ First step : Single-Reference EDF (”Self-consistent mean field”, ”HFB”) B. Bally MR-EDF calculations of odd-even nuclei

  5. SR-EDF : ”HFB” realization ◮ Minimization with constraint : δ ( E − λ � ˆ N � − λ q � ˆ Q � ) = 0 λ, λ q : lagrange multipliers ˆ N : particle number operator ˆ Q : multipole operator ◮ ”HFB” equations : � ˆ � � U � U � � ˆ h − λ ∆ = E h ∗ + λ − ˆ − ˆ ∆ ∗ V V ˆ h = ∂ E ˆ ∂ E ∂ρ : particle-hole field ∆ = ∂κ ∗ : particle-particle field ρ = V ∗ V T κ = V ∗ U T ◮ Self-iterative blocking : ( U ki , V ki ) ↔ ( V ki ∗ , U ki ∗ ) B. Bally MR-EDF calculations of odd-even nuclei

  6. SR-EDF : ”HFB+LN” realization N 2 � − λ q � ˆ ◮ Minimization with constraint : δ ( E − λ � ˆ N � − λ 2 � ˆ Q � ) = 0 λ 2 : not a lagrange multiplier λ, λ q : lagrange multipliers ˆ N : particle number operator ˆ Q : multipole operator ◮ ”HFB+LN” equations : � ˆ � � U � U � � ˆ h − λ ∆ = E h ∗ + λ − ˆ ∆ ∗ − ˆ V V ˆ ˆ h = ∂ E ∂ E ∂ρ : particle-hole field ∆ = ∂κ ∗ : particle-particle field ρ = V ∗ V T κ = V ∗ U T ∗ , U ki ∗ ) ◮ Self-iterative blocking : ( U ki , V ki ) ↔ ( V ki B. Bally MR-EDF calculations of odd-even nuclei

  7. SR-EDF : symmetries of the code ◮ Triaxial cranking code ” CR8 ”. P. Bonche, H. Flocard, P.-H. Heenen, S.J. Krieger and M.S. Weiss, Nucl. Phys. A 443 (1985) 39-63 R x , ˆ 2 h subgroup { ˆ y ,ˆ ◮ D TD S T P } : R x = e − i π ˆ J x . : ˆ X signature ˆ Pe − i π ˆ J y . y = ˆ T ˆ Y time-simplex : S T : ˆ Parity P . B. Bally MR-EDF calculations of odd-even nuclei

  8. SR-EDF : symmetries of the code ◮ Triaxial cranking code ” CR8 ”. P. Bonche, H. Flocard, P.-H. Heenen, S.J. Krieger and M.S. Weiss, Nucl. Phys. A 443 (1985) 39-63 R x , ˆ 2 h subgroup { ˆ y ,ˆ ◮ D TD S T P } : R x = e − i π ˆ : ˆ J x . X signature ˆ Pe − i π ˆ y = ˆ T ˆ J y . Y time-simplex : S T : ˆ Parity P . even-even vacua ˆ R x | Φ � = | Φ � ˆ P | Φ � = | Φ � ˆ S T y | Φ � = | Φ � B. Bally MR-EDF calculations of odd-even nuclei

  9. SR-EDF : symmetries of the code ◮ Triaxial cranking code ” CR8 ”. P. Bonche, H. Flocard, P.-H. Heenen, S.J. Krieger and M.S. Weiss, Nucl. Phys. A 443 (1985) 39-63 R x , ˆ 2 h subgroup { ˆ y ,ˆ ◮ D TD S T P } : R x = e − i π ˆ J x . : ˆ X signature ˆ Pe − i π ˆ J y . y = ˆ T ˆ Y time-simplex : S T : ˆ Parity P . even-even vacua odd-even nuclei ˆ R x | Φ � = | Φ � ˆ R x | Φ � = ± i | Φ � ˆ P | Φ � = | Φ � ˆ P | Φ � = ± | Φ � ˆ S T y | Φ � = | Φ � ˆ S T y | Φ � = | Φ � B. Bally MR-EDF calculations of odd-even nuclei

  10. Philosophy of the approach ◮ Energy Density Functional : E [ ρ, κ, κ ∗ ] � Ψ L | c † � Ψ L | c † i c † j c i | Ψ R � RL = j | Ψ R � � Ψ L | c j c i | Ψ R � κ ∗ ρ LR κ LR ij = ij = ij � Ψ L | Ψ R � � Ψ L | Ψ R � � Ψ L | Ψ R � ◮ First step : Single-Reference EDF (”Self-consistent mean field”, ”HFB”) ✔ takes into account static collective correlations. ✘ loss of quantum numbers and selection rules for transitions. ◮ Second step : Multi-Reference EDF (”Beyond mean field”) B. Bally MR-EDF calculations of odd-even nuclei

  11. MR-EDF : symmetry restoration Angular-momentum restoration operator : rotation in real space � 2 π � 2 π � π � �� � MK = 2 J + 1 ˆ d γ D ∗ J ˆ P J d β sin( β ) MK ( α, β, γ ) R ( α, β, γ ) d α 8 π 2 � �� � 0 0 0 Wigner function K is the z component of angular momentum in the body-fixed frame. Projected states are given by + J + J � � P Z ˆ P N | q � = f J ,κ ( K ) ˆ P J MK ˆ | JMq κ � = f J ,κ ( K ) | JMKq � K = − J K = − J f J ,κ ( K ) are the weights of the components K and determined variationally B. Bally MR-EDF calculations of odd-even nuclei

  12. MR-EDF : configuration mixing via the ”Generator Coordinate Method” Superposition of angular-momentum restored SR-EDF states � | JMKq � + J � � projected mean-field state | JM ν � = f J ν ( q , K ) | JMKq � f J ν ( q , K ) weight function q K = − J � JM ν | ˆ δ H | JM ν � = 0 ⇒ Hill-Wheeler-Griffin equation δ f ∗ J ν ( q , K ) � JM ν | JM ν � + J � � � � H J ( qK , q ′ K ′ ) − E J ,ν I J ( qK , q ′ K ′ ) f J ,ν ( q ′ , K ′ ) = 0 q ′ K ′ = − J with H J ( qK , q ′ K ′ ) = � JMKq | ˆ H | JMK ′ q ′ � energy kernel I J ( qK , q ′ K ′ ) = � JMKq | JMK ′ q ′ � norm kernel Angular-momentum projected GCM gives the ◮ correlated ground state for each value of J ◮ spectrum of excited states for each J B. Bally MR-EDF calculations of odd-even nuclei

  13. Philosophy of the approach ◮ Energy Density Functional : E [ ρ, κ, κ ∗ ] � Ψ L | c † � Ψ L | c † i c † j c i | Ψ R � RL = j | Ψ R � � Ψ L | c j c i | Ψ R � κ ∗ ρ LR κ LR ij = ij = ij � Ψ L | Ψ R � � Ψ L | Ψ R � � Ψ L | Ψ R � ◮ First step : Single-Reference EDF (”Self-consistent mean field”, ”HFB”) ✔ takes into account static collective correlations. ✘ loss of quantum numbers and selection rules for transitions. ◮ Second step : Multi-Reference EDF (”Beyond mean field”) ✔ takes into account fluctuations in collective degrees of freedom. ✔ restoration of quantum numbers and selection rules for transitions. B. Bally MR-EDF calculations of odd-even nuclei

  14. Preliminary results about 49 Cr B. Bally MR-EDF calculations of odd-even nuclei

  15. Choice of the functional ◮ Skyrme parametrization SIII. ◮ Delta force pairing (strength : 300 MeV for neutrons and protons). ◮ No coulomb exchange. ◮ Regularization of the functional to avoid the ”pole problem”. M. Bender, T. Duguet, P.-H. Heenen, D. Lacroix, Int. J. Mod. Phys. E 20 (2011) 259-269 B. Bally MR-EDF calculations of odd-even nuclei

  16. Non-projected energy surface From the lowest quasiparticle with � J z � π ≈ | 2 . 5 | − B. Bally MR-EDF calculations of odd-even nuclei

  17. Non-projected → PNR energy surface → B. Bally MR-EDF calculations of odd-even nuclei

  18. − energy surface PNR → PNR+AMR : J π = 5 2 5 2 → B. Bally MR-EDF calculations of odd-even nuclei

  19. − energy surface PNR+AMR : J π = 5 2 5 2 B. Bally MR-EDF calculations of odd-even nuclei

  20. 49 Cr versus 48 Cr 5 2 VS M. Bender, B. Avez, P.-H. Heenen, unpublished B. Bally MR-EDF calculations of odd-even nuclei

  21. − energy surface PNR+AMR : J π = 5 2 5 2 B. Bally MR-EDF calculations of odd-even nuclei

  22. J and K decompositions β = 0 . 27 γ = 00 . 0 ◦ β = 0 . 27 γ = 00 . 0 ◦ B. Bally MR-EDF calculations of odd-even nuclei

  23. − energy surface PNR+AMR : J π = 5 2 5 2 B. Bally MR-EDF calculations of odd-even nuclei

  24. J and K decompositions β = 0 . 33 γ = 15 . 3 ◦ β = 0 . 33 γ = 15 . 3 ◦ B. Bally MR-EDF calculations of odd-even nuclei

  25. − energy surface PNR+AMR : J π = 5 2 5 2 B. Bally MR-EDF calculations of odd-even nuclei

  26. J and K decompositions β = 0 . 00 γ = 00 . 0 ◦ β = 0 . 00 γ = 00 . 0 ◦ B. Bally MR-EDF calculations of odd-even nuclei

  27. − energy surface PNR+AMR : J π = 7 2 7 2 B. Bally MR-EDF calculations of odd-even nuclei

  28. Incomplete GCM (3 points) 5 2 → Experiment : T.W. Burrows, Nuclear Data Sheets 109 (2008) 1879-2032 B. Bally MR-EDF calculations of odd-even nuclei

  29. Cranking ◮ δ ( E − λ � ˆ N � − λ 2 � ˆ N 2 � − λ q � ˆ Q � − ω � ˆ J x � ) = 0 ω : lagrange parameter √ ◮ � ˆ J 2 − K 2 J x � = K = 5 ( → see K decompositions) 2 ◮ Projection of cranked states should improve the moments of inertia. B. Bally MR-EDF calculations of odd-even nuclei

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend