more on duality
play

More on Duality Marco Chiarandini Department of Mathematics & - PowerPoint PPT Presentation

DM545/DM871 Linear and Integer Programming Lecture 6 More on Duality Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Derivation Dual Simplex Outline Sensitivity Analysis 1. Derivation


  1. DM545/DM871 Linear and Integer Programming Lecture 6 More on Duality Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark

  2. Derivation Dual Simplex Outline Sensitivity Analysis 1. Derivation Lagrangian Duality 2. Dual Simplex 3. Sensitivity Analysis 2

  3. Derivation Dual Simplex Summary Sensitivity Analysis • Derivation: 1. economic interpretation 2. bounding 3. multipliers 4. recipe 5. Lagrangian • Theory: • Symmetry • Weak duality theorem • Strong duality theorem • Complementary slackness theorem • Dual Simplex • Sensitivity Analysis, Economic interpretation 3

  4. Derivation Dual Simplex Outline Sensitivity Analysis 1. Derivation Lagrangian Duality 2. Dual Simplex 3. Sensitivity Analysis 4

  5. Derivation Dual Simplex Outline Sensitivity Analysis 1. Derivation Lagrangian Duality 2. Dual Simplex 3. Sensitivity Analysis 9

  6. Derivation Dual Simplex Lagrangian Duality Sensitivity Analysis Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds. min 13 x 1 + 6 x 2 + 4 x 3 + 12 x 4 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 = 7 3 x 1 + + 2 x 3 + 4 x 4 = 2 x 1 , x 2 , x 3 , x 4 ≥ 0 10

  7. Derivation Dual Simplex Lagrangian Duality Sensitivity Analysis Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds. min 13 x 1 + 6 x 2 + 4 x 3 + 12 x 4 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 = 7 3 x 1 + + 2 x 3 + 4 x 4 = 2 x 1 , x 2 , x 3 , x 4 ≥ 0 We wish to reduce to a problem easier to solve, ie: min c 1 x 1 + c 2 x 2 + . . . + c n x n x 1 , x 2 , . . . , x n ≥ 0 10

  8. Derivation Dual Simplex Lagrangian Duality Sensitivity Analysis Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds. min 13 x 1 + 6 x 2 + 4 x 3 + 12 x 4 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 = 7 3 x 1 + + 2 x 3 + 4 x 4 = 2 x 1 , x 2 , x 3 , x 4 ≥ 0 We wish to reduce to a problem easier to solve, ie: min c 1 x 1 + c 2 x 2 + . . . + c n x n x 1 , x 2 , . . . , x n ≥ 0 solvable by inspection: 10

  9. Derivation Dual Simplex Lagrangian Duality Sensitivity Analysis Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds. min 13 x 1 + 6 x 2 + 4 x 3 + 12 x 4 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 = 7 3 x 1 + + 2 x 3 + 4 x 4 = 2 x 1 , x 2 , x 3 , x 4 ≥ 0 We wish to reduce to a problem easier to solve, ie: min c 1 x 1 + c 2 x 2 + . . . + c n x n x 1 , x 2 , . . . , x n ≥ 0 solvable by inspection: if c < 0 then x = + ∞ , if c ≥ 0 then x = 0. 10

  10. Derivation Dual Simplex Lagrangian Duality Sensitivity Analysis Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds. min 13 x 1 + 6 x 2 + 4 x 3 + 12 x 4 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 = 7 3 x 1 + + 2 x 3 + 4 x 4 = 2 x 1 , x 2 , x 3 , x 4 ≥ 0 We wish to reduce to a problem easier to solve, ie: min c 1 x 1 + c 2 x 2 + . . . + c n x n x 1 , x 2 , . . . , x n ≥ 0 solvable by inspection: if c < 0 then x = + ∞ , if c ≥ 0 then x = 0. measure of violation of the constraints: 7 − ( 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 ) 2 − ( 3 x 1 + + 2 x 3 + 4 x 4 ) 10

  11. Derivation Dual Simplex Sensitivity Analysis We relax these measures in obj. function with Lagrangian multipliers y 1 , y 2 . We obtain a family of problems:   13 x 1 + 6 x 2 + 4 x 3 + 12 x 4   PR ( y 1 , y 2 ) = min + y 1 ( 7 − 2 x 1 − 3 x 2 − 4 x 3 − 5 x 4 ) x 1 , x 2 , x 3 , x 4 ≥ 0 + y 2 ( 2 − 3 x 1 − 2 x 3 − 4 x 4 )   11

  12. Derivation Dual Simplex Sensitivity Analysis We relax these measures in obj. function with Lagrangian multipliers y 1 , y 2 . We obtain a family of problems:   13 x 1 + 6 x 2 + 4 x 3 + 12 x 4   PR ( y 1 , y 2 ) = min + y 1 ( 7 − 2 x 1 − 3 x 2 − 4 x 3 − 5 x 4 ) x 1 , x 2 , x 3 , x 4 ≥ 0 + y 2 ( 2 − 3 x 1 − 2 x 3 − 4 x 4 )   1. for all y 1 , y 2 ∈ R : opt ( PR ( y 1 , y 2 )) ≤ opt ( P ) 2. max y 1 , y 2 ∈ R { opt ( PR ( y 1 , y 2 )) } ≤ opt ( P ) PR is easy to solve. (It can be also seen as a proof of the weak duality theorem) 11

  13. Derivation Dual Simplex Sensitivity Analysis   ( 13 − 2 y 2 − 3 y 2 ) x 1     + ( 6 − 3 y 1 ) x 2       PR ( y 1 , y 2 ) = min + ( 4 − 2 y 2 ) x 3 x 1 , x 2 , x 3 , x 4 ≥ 0 + ( 12 − 5 y 1 − 4 y 2 ) x 4         + 7 y 1 + 2 y 2   12

  14. Derivation Dual Simplex Sensitivity Analysis   ( 13 − 2 y 2 − 3 y 2 ) x 1     + ( 6 − 3 y 1 ) x 2       PR ( y 1 , y 2 ) = min + ( 4 − 2 y 2 ) x 3 x 1 , x 2 , x 3 , x 4 ≥ 0 + ( 12 − 5 y 1 − 4 y 2 ) x 4         + 7 y 1 + 2 y 2   if coeff. of x is < 0 then bound is −∞ then LB is useless ( 13 − 2 y 2 − 3 y 2 ) ≥ 0 ( 6 − 3 y 1 ) ≥ 0 ( 4 − 2 y 2 ) ≥ 0 ( 12 − 5 y 1 − 4 y 2 ) ≥ 0 12

  15. Derivation Dual Simplex Sensitivity Analysis   ( 13 − 2 y 2 − 3 y 2 ) x 1     + ( 6 − 3 y 1 ) x 2       PR ( y 1 , y 2 ) = min + ( 4 − 2 y 2 ) x 3 x 1 , x 2 , x 3 , x 4 ≥ 0 + ( 12 − 5 y 1 − 4 y 2 ) x 4         + 7 y 1 + 2 y 2   if coeff. of x is < 0 then bound is −∞ then LB is useless ( 13 − 2 y 2 − 3 y 2 ) ≥ 0 ( 6 − 3 y 1 ) ≥ 0 ( 4 − 2 y 2 ) ≥ 0 ( 12 − 5 y 1 − 4 y 2 ) ≥ 0 If they all hold then we are left with 7 y 1 + 2 y 2 because all go to 0. max 7 y 1 + 2 y 2 2 y 2 + 3 y 2 ≤ 13 3 y 1 ≤ 6 + 2 y 2 ≤ 4 5 y 1 + 4 y 2 ≤ 12 12

  16. Derivation Dual Simplex General Formulation Sensitivity Analysis z = c T x c ∈ R n min A ∈ R m × n , b ∈ R m A x = b x ≥ 0 x ∈ R n { c T x + y T ( b − A x ) }} y ∈ R m { min max x ∈ R n + { ( c T − y T A ) x + y T b }} y ∈ R m { min max x ∈ R n + b T y max A T y ≤ c y ∈ R m 13

  17. Derivation Dual Simplex Outline Sensitivity Analysis 1. Derivation Lagrangian Duality 2. Dual Simplex 3. Sensitivity Analysis 14

  18. Derivation Dual Simplex Dual Simplex Sensitivity Analysis • Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableau: max { c T x | Ax ≤ b , x ≥ 0 } = min { b T y | A T y ≥ c T , y ≥ 0 } = − max {− b T y | − A T x ≤ − c T , y ≥ 0 } • We obtain a new algorithm for the primal problem: the dual simplex It corresponds to the primal simplex applied to the dual Primal simplex on primal problem: Dual simplex on primal problem: 1. pivot < 0 1. pivot > 0 2. row b i < 0 2. col c j with wrong sign (condition of feasibility) � � b i 3. row: min a ij : a ij > 0 , i = 1 , .., m �� � � � c j 3. col: min � : a ij < 0 , j = 1 , 2 , .., n + m � � a ij (least worsening solution) 15

  19. Derivation Dual Simplex Dual Simplex Sensitivity Analysis 0. (primal) simplex on primal problem (the one studied so far) 1. Now: dual simplex on primal problem ≡ primal simplex on dual problem (implemented as dual simplex, understood as primal simplex on dual problem) Uses of 1.: • The dual simplex can work better than the primal in some cases. Eg. since running time in practice between 2 m and 3 m , then if m = 99 and n = 9 then better the dual • Infeasible start Dual based Phase I algorithm (Dual-primal algorithm) 16

  20. Derivation Dual Simplex for Phase I Dual Simplex Sensitivity Analysis Example Primal: Dual: max − x 1 − x 2 min 4 y 1 − 8 y 2 − 7 y 3 − 2 x 1 − x 2 ≤ 4 − 2 y 1 − 2 y 2 − y 3 ≥ − 1 − 2 x 1 + 4 x 2 ≤ − 8 − y 1 + 4 y 2 + 3 y 3 ≥ − 1 − x 1 + 3 x 2 ≤ − 7 y 1 , y 2 , y 3 ≥ 0 x 1 , x 2 ≥ 0 18

  21. Derivation Dual Simplex for Phase I Dual Simplex Sensitivity Analysis Example Primal: Dual: max − x 1 − x 2 min 4 y 1 − 8 y 2 − 7 y 3 − 2 x 1 − x 2 ≤ 4 − 2 y 1 − 2 y 2 − y 3 ≥ − 1 − 2 x 1 + 4 x 2 ≤ − 8 − y 1 + 4 y 2 + 3 y 3 ≥ − 1 − x 1 + 3 x 2 ≤ − 7 y 1 , y 2 , y 3 ≥ 0 x 1 , x 2 ≥ 0 • Initial tableau • Initial tableau (min by ≡ − max − by ) | | x1 | x2 | w1 | w2 | w3 | -z | b | | | y1 | y2 | y3 | z1 | z2 | -p | b | |---+----+----+----+----+----+----+----| |---+----+----+----+----+----+----+---| | | -2 | -1 | 1 | 0 | 0 | 0 | 4 | | | 2 | 2 | 1 | 1 | 0 | 0 | 1 | | | -2 | 4 | 0 | 1 | 0 | 0 | -8 | | | 1 | -4 | -3 | 0 | 1 | 0 | 1 | | | -1 | 3 | 0 | 0 | 1 | 0 | -7 | |---+----+----+----+----+----+----+---| |---+----+----+----+----+----+----+----| | | -4 | 8 | 7 | 0 | 0 | 1 | 0 | | | -1 | -1 | 0 | 0 | 0 | 1 | 0 | infeasible start feasible start (thanks to − x 1 − x 2 ) 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend