more on duality
play

More on Duality Marco Chiarandini Department of Mathematics & - PowerPoint PPT Presentation

DM545 Linear and Integer Programming Lecture 6 More on Duality Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Derivation Outline Sensitivity Analysis 1. Derivation Geometric


  1. DM545 Linear and Integer Programming Lecture 6 More on Duality Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark

  2. Derivation Outline Sensitivity Analysis 1. Derivation Geometric Interpretation Lagrangian Duality Dual Simplex 2. Sensitivity Analysis 2

  3. Derivation Summary Sensitivity Analysis • Derivation: 1. economic interpretation 2. bounding 3. multipliers 4. recipe 5. Lagrangian • Theory: • Symmetry • Weak duality theorem • Strong duality theorem • Complementary slackness theorem • Dual Simplex • Sensitivity Analysis, Economic interpretation 3

  4. Derivation Outline Sensitivity Analysis 1. Derivation Geometric Interpretation Lagrangian Duality Dual Simplex 2. Sensitivity Analysis 4

  5. Derivation Dual Problem Sensitivity Analysis Dual variables y in one-to-one correspondence with the constraints: Primal problem: Dual Problem: w = b T y min z = c T x max A T y ≥ c A x = b y ∈ R m x ≥ 0 • Basic feasible solutions of (P) give immediate lower bounds on the optimal value z ∗ . Is there a simple way to get upper bounds? • The optimal solution must satisfy any linear combination y ∈ R m of the equality constraints. • If we can construct a linear combination of the equality constraints y T ( A x ) = y T b , for y ∈ R m , such that c T x ≤ y T ( A x ) , then y T ( A x ) = y T b is an upper bound on z ∗ . 5

  6. Derivation Outline Sensitivity Analysis 1. Derivation Geometric Interpretation Lagrangian Duality Dual Simplex 2. Sensitivity Analysis 6

  7. Derivation Geometric Interpretation Sensitivity Analysis x 2 max x 1 + x 2 = z 2 x 1 + x 2 ≤ 14 − x 1 + 2 x 2 ≤ 8 − x 1 + 2 x 2 ≤ 8 2 x 1 − x 2 ≤ 10 2 x 1 − x 2 ≤ 10 x 1 , x 2 ≥ 0 x 1 x 1 + x 2 2 x 1 + x 2 ≤ 14 Feasible sol x ∗ = ( 4 , 6 ) yields z ∗ = 10. To prove that it is optimal we need to verify that y ∗ = ( 3 / 5 , 1 / 5 , 0 ) is a feasible solution of D : min 14 y 1 + 8 y 2 + 10 y 3 = w the feasibility region 2 y 1 − y 2 + 2 y 3 ≥ 1 x 2 of P is a subset of the y 1 + 2 y 2 − y 3 ≥ 1 half plane x 1 + x 2 ≤ 10 y 1 , y 2 , y 3 ≥ 0 and that w ∗ = 10 3 5 · ( 2 x 1 + x 2 ≤ 14 ) 1 5 · ( − x 1 + 2 x 2 ≤ 8 ) x 1 x 1 + x 2 ≤ 10 x 1 + x 2 ≤ 10 7

  8. Derivation Sensitivity Analysis ( 2 v − w ) x 1 + ( v + 2 w ) x 2 ≤ 14 v + 8 w set of halfplanes that contain the feasibility region of P and pass through [ 4 , 6 ] 2 v − w ≥ 1 x 2 v + 2 w ≥ 1 Example of boundary lines among those allowed: v = 1 , w = 0 = ⇒ 2 x 1 + x 2 = 14 x 1 + 3 x 2 = 22 v = 1 , w = 1 = ⇒ x 1 + 3 x 2 = 22 x 1 3 x 1 + 4 x 2 = 36 v = 2 , w = 1 = ⇒ 3 x 1 + 4 x 2 = 36 x 1 + x 2 ≤ 10 2 x 1 + x 2 = 14 8

  9. Derivation Outline Sensitivity Analysis 1. Derivation Geometric Interpretation Lagrangian Duality Dual Simplex 2. Sensitivity Analysis 10

  10. Derivation Lagrangian Duality Sensitivity Analysis Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then, search for the strongest bounds. min 13 x 1 + 6 x 2 + 4 x 3 + 12 x 4 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 = 7 3 x 1 + + 2 x 3 + 4 x 4 = 2 x 1 , x 2 , x 3 , x 4 ≥ 0 We wish to reduce to a problem easier to solve, ie: min c 1 x 1 + c 2 x 2 + . . . + c n x n x 1 , x 2 , . . . , x n ≥ 0 solvable by inspection: if c < 0 then x = + ∞ , if c ≥ 0 then x = 0. measure of violation of the constraints: 7 − ( 2 x 1 + 3 x 2 + 4 x 3 + 5 x 4 ) 2 − ( 3 x 1 + + 2 x 3 + 4 x 4 ) 11

  11. Derivation Sensitivity Analysis We relax these measures in obj. function with Lagrangian multipliers y 1 , y 2 . We obtain a family of problems:   13 x 1 + 6 x 2 + 4 x 3 + 12 x 4   PR ( y 1 , y 2 ) = min + y 1 ( 7 − 2 x 1 − 3 x 2 − 4 x 3 − 5 x 4 ) x 1 , x 2 , x 3 , x 4 ≥ 0 + y 2 ( 2 − 3 x 1 − 2 x 3 − 4 x 4 )   1. for all y 1 , y 2 ∈ R : opt ( PR ( y 1 , y 2 )) ≤ opt ( P ) 2. max y 1 , y 2 ∈ R { opt ( PR ( y 1 , y 2 )) } ≤ opt ( P ) PR is easy to solve. (It can be also seen as a proof of the weak duality theorem) 12

  12. Derivation Sensitivity Analysis   ( 13 − 2 y 2 − 3 y 2 ) x 1     + ( 6 − 3 y 1 ) x 2       PR ( y 1 , y 2 ) = min + ( 4 − 2 y 2 ) x 3 x 1 , x 2 , x 3 , x 4 ≥ 0 + ( 12 − 5 y 1 − 4 y 2 ) x 4         + 7 y 1 + 2 y 2   if coeff. of x is < 0 then bound is −∞ then LB is useless ( 13 − 2 y 2 − 3 y 2 ) ≥ 0 ( 6 − 3 y 1 ) ≥ 0 ( 4 − 2 y 2 ) ≥ 0 ( 12 − 5 y 1 − 4 y 2 ) ≥ 0 If they all hold then we are left with 7 y 1 + 2 y 2 because all go to 0. max 7 y 1 + 2 y 2 2 y 2 + 3 y 2 ≤ 13 3 y 1 ≤ 6 + 2 y 2 ≤ 4 5 y 1 + 4 y 2 ≤ 12 13

  13. Derivation General Formulation Sensitivity Analysis z = c T x c ∈ R n min A ∈ R m × n , b ∈ R m A x = b x ∈ R n x ≥ 0 { c T x + y T ( b − A x ) }} y ∈ R m { min max x ∈ R n + { ( c T − y T A ) x + y T b }} y ∈ R m { min max x ∈ R n + b T y max A T y ≤ c y ∈ R m 14

  14. Derivation Outline Sensitivity Analysis 1. Derivation Geometric Interpretation Lagrangian Duality Dual Simplex 2. Sensitivity Analysis 15

  15. Derivation Dual Simplex Sensitivity Analysis • Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableau: max { c T x | Ax ≤ b , x ≥ 0 } = min { b T y | A T y ≥ c T , y ≥ 0 } = − max {− b T y | − A T x ≤ − c T , y ≥ 0 } • We obtain a new algorithm for the primal problem: the dual simplex It corresponds to the primal simplex applied to the dual Primal simplex on primal problem: Dual simplex on primal problem: 1. pivot < 0 1. pivot > 0 2. row b i < 0 2. col c j with wrong sign (condition of feasibility) � � b i 3. row: min a ij : a ij > 0 , i = 1 , .., m �� � � � c j 3. col: min � : a ij < 0 , j = 1 , 2 , .., n + m � � a ij (least worsening solution) 16

  16. Derivation Dual Simplex Sensitivity Analysis 0. (primal) simplex on primal problem (the one studied so far) 1. Now: dual simplex on primal problem ≡ primal simplex on dual problem (implemented as dual simplex, understood as primal simplex on dual problem) Uses of 1.: • The dual simplex can work better than the primal in some cases. Eg. since running time in practice between 2 m and 3 m , then if m = 99 and n = 9 then better the dual • Infeasible start Dual based Phase I algorithm (Dual-primal algorithm) 17

  17. Dual Simplex for Phase I Derivation Sensitivity Analysis Example Primal: Dual: max min 4 y 1 − 8 y 2 − 7 y 3 − x 1 − x 2 − 2 x 1 − 4 − 2 y 1 − 2 y 2 − y 3 ≥ − 1 x 2 ≤ − 2 x 1 + 4 x 2 ≤ − 8 − y 1 + 4 y 2 + 3 y 3 ≥ − 1 − x 1 + 3 x 2 ≤ − 7 y 1 , y 2 , y 3 ≥ 0 x 1 , x 2 ≥ 0 • Initial tableau • Initial tableau (min by ≡ − max − by ) | | x1 | x2 | w1 | w2 | w3 | -z | b | | | y1 | y2 | y3 | z1 | z2 | -p | b | |---+----+----+----+----+----+----+----| |---+----+----+----+----+----+----+---| | | -2 | -1 | 1 | 0 | 0 | 0 | 4 | | | 2 | 2 | 1 | 1 | 0 | 0 | 1 | | | -2 | 4 | 0 | 1 | 0 | 0 | -8 | | | 1 | -4 | -3 | 0 | 1 | 0 | 1 | | | -1 | 3 | 0 | 0 | 1 | 0 | -7 | |---+----+----+----+----+----+----+---| |---+----+----+----+----+----+----+----| | | -4 | 8 | 7 | 0 | 0 | 1 | 0 | | | -1 | -1 | 0 | 0 | 0 | 1 | 0 | infeasible start feasible start (thanks to − x 1 − x 2 ) • x 1 enters, w 2 leaves • y 2 enters, z 1 leaves 19

  18. Derivation Sensitivity Analysis • x 1 enters, w 2 leaves • y 2 enters, z 1 leaves | | x1 | x2 | w1 | w2 | w3 | -z | b | | | y1 | y2 | y3 | z1 | z2 | -p | b | |---+----+----+----+------+----+----+----| |---+----+----+-----+-----+----+----+-----| | | 0 | -5 | 1 | -1 | 0 | 0 | 12 | | | 1 | 1 | 0.5 | 0.5 | 0 | 0 | 0.5 | | | 1 | -2 | 0 | -0.5 | 0 | 0 | 4 | | | 5 | 0 | -1 | 2 | 1 | 0 | 3 | | | 0 | 1 | 0 | -0.5 | 1 | 0 | -3 | |---+----+----+-----+-----+----+----+-----| |---+----+----+----+------+----+----+----| | | -4 | 0 | 3 | -12 | 0 | 1 | -4 | | | 0 | -3 | 0 | -0.5 | 0 | 1 | 4 | • y 3 enters, y 2 leaves • w 2 enters, w 3 leaves (note that we kept c j < 0, ie, optimality) | | y1 | y2 | y3 | z1 | z2 | -p | b | |---+-----+----+----+----+----+----+----| | | x1 | x2 | w1 | w2 | w3 | -z | b | | | 2 | 2 | 1 | 1 | 0 | 0 | 1 | |---+----+----+----+----+----+----+----| | | 7 | 2 | 0 | 3 | 1 | 0 | 3 | | | 0 | -7 | 1 | 0 | -2 | 0 | 18 | |---+-----+----+----+----+----+----+----| | | 1 | -3 | 0 | 0 | -1 | 0 | 7 | | | -18 | -6 | 0 | -7 | 0 | 1 | -7 | | | 0 | -2 | 0 | 1 | -2 | 0 | 6 | |---+----+----+----+----+----+----+----| | | 0 | -4 | 0 | 0 | -1 | 1 | 7 | 20

  19. Derivation Summary Sensitivity Analysis • Derivation: 1. bounding 2. multipliers 3. recipe 4. Lagrangian • Theory: • Symmetry • Weak duality theorem • Strong duality theorem • Complementary slackness theorem • Dual Simplex • Sensitivity Analysis, Economic interpretation 21

  20. Derivation Outline Sensitivity Analysis 1. Derivation Geometric Interpretation Lagrangian Duality Dual Simplex 2. Sensitivity Analysis 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend