moments of the 3 loop corrections to the heavy flavor
play

Moments of the 3-Loop Corrections to the Heavy Flavor Contribution to - PowerPoint PPT Presentation

1 Moments of the 3-Loop Corrections to the Heavy Flavor Contribution to F 2 ( x, Q 2 ) for Q 2 m 2 Sebastian Klein, DESY in collaboration with I. Bierenbaum and J. Bl umlein Introduction and Theory Status The Method 2 Loop


  1. 1 Moments of the 3-Loop Corrections to the Heavy Flavor Contribution to F 2 ( x, Q 2 ) for Q 2 ≫ m 2 Sebastian Klein, DESY in collaboration with I. Bierenbaum and J. Bl¨ umlein • Introduction and Theory Status • The Method • 2 Loop Results • Asymptotic 3 Loop Results (Fixed Moments) & Anomalous Dimensions • Towards an all– N Result at 3 Loops. • Conclusions Sebastian Klein Fermilab, Theory Seminar 18.06.2009

  2. 2 References : - I. Bierenbaum, J. Bl¨ umlein, and S. K., Phys. Lett. B648 (2007) 195, 0702265 [hep-ph] ; Nucl. Phys. B780 (2007) 40, 0703285 [hep-ph] ; Phys. Lett. B672 (2009) 401, 0901.0669 [hep-ph] ; Nucl. Phys. B (2009), 0904.3563 [hep-ph] ; in print . - I. Bierenbaum, J. Bl¨ umlein, S. K. and C. Schneider, Nucl. Phys. B803 (2008) 1, 0803.0273 [hep-ph] ; 0707.4659 [math-ph] . - J. Bl¨ umlein, M. Kauers, S. K. and C. Schneider, Comput. Phys. Commun. (2009), 0902.4091 [hep-ph] ; in print . - J. Bl¨ umlein, A. De Freitas, W.L. van Neerven and S. K., Nucl. Phys. B755 (2006) 272, 0605310 [hep-ph] .

  3. 3 1. Introduction Deep–Inelastic Scattering: k ′ k Q 2 Q 2 := − q 2 , x := 2 P · q , Bjorken–x L µν q ν := P · q , M dσ dQ 2 dx ∼ L µν W µν P W µν The picture of the proton at short distances [Feynman, 1969; Bjorken, Paschos, 1969.] • The proton mainly consists of light partons. • There are three valence partons: two up quarks and one down quark. • The sea–partons are: u, u, d, d, s, s and the gluon g .

  4. 4 The hadronic tensor cannot be calculated perturbatively. It can be decomposed into several scalar structure functions. For DIS via single photon exchange, it is given by: � W µν ( q, P, s ) = 1 d 4 ξ exp( iqξ ) � P, s | [ J em µ ( ξ ) , J em (0)] | P, s � ν 4 π � � � � � − Q 2 = 1 g µν − q µ q ν F L ( x, Q 2 ) + 2 x P µ P ν + q µ P ν + q ν P µ F 2 ( x, Q 2 ) unpol. 4 x 2 g µν q 2 Q 2 2 x 2 x � � � � � − M s β − sq s β g 1 ( x, Q 2 ) + g 2 ( x, Q 2 ) 2 Pq ε µναβ q α Pq p β pol. . In Bjorken limit, { Q 2 , ν } → ∞ , x fixed, at twist τ = 2–level: � � x, Q 2 µ 2 , m 2 � F i ( x, Q 2 ) f j ( x, µ 2 ) , k = C i,j ⊗ µ 2 � �� � � �� � j � �� � structure functions parton densities, Wilson coefficients, non-perturbative perturbative = ⇒ Wilson coefficients contain both light and heavy flavor contributions: � � � � � � x, Q 2 µ 2 , m 2 x, Q 2 x, Q 2 µ 2 , m 2 = C light k k C i,j + H i,j , k = c, b . i,j µ 2 µ 2 µ 2

  5. 5 The Discovery of Heavy Quarks J [Aubert et al. , 1974] @ BNL Υ [Herb et al. , 1977] @ FERMILAB Ψ [Augustin et al. , 1974] @ SLAC • Masses of charm and bottom [PDG, 2008.] : m c ≈ 1 . 3 GeV, m b ≈ 4 . 2 GeV

  6. 6 Heavy Quarks in DIS • Assume only light partons in the proton. Light quarks may directly scatter off the exchanged vector boson, the gluon via quark–pair production. • Heavy quarks (c or b) emerge in final states through hard scattering processes (top outside the HERA region). • LO contribution to F (2 ,L ) by heavy quark production: photon-gluon fusion � 1 � x � z , m 2 dz a = 1 + 4 m 2 /Q 2 . z H (1) F QQ (2 ,L ) ( x, Q 2 ) = 4 e 2 G ( z, Q 2 ) , c a s (2 ,L ) ,g Q 2 ax � • open c(b) • heavy quark J / Ψ = cc Q Υ = bb production: resonances: D u = uc , ... cc = J / Ψ Q B u = ub , ... bb = Υ . [Witten, 1976; Gl¨ uck, Reya, 1979, ...] [Berger, Jones, 1981.] • Observation of charmonium in DIS [Aubert et al. , 1983.]

  7. 7 The Gluon Distribution • Gluon carries roughly 50% of the proton momentum. • Heavy quark production is an excellent way to extract the gluon density via a measurement of - scaling–violations of F 2 , - F QQ . L • First extraction of the gluon density including heavy quark effects by uck, Hoffmann, Reya, 1982.] : [Gl¨ - Unfold the gluon density via � f ( x, Q 2 ) G ( x, Q 2 ) = P − 1 qg ⊗ x � − 2 3 P cg ⊗ G ( x, Q 2 ) .

  8. 8 – cc H1+ZEUS BEAUTY CROSS SECTION in DIS HERA F 2 _ ∼ bb – cc Q 2 = 5 GeV 2 Q 2 = 12 GeV 2 Q 2 = 25 GeV 2 F 2 Q 2 = 2 GeV 2 4 GeV 2 7 GeV 2 σ H1 HERA I: NLO QCD: D* VTX CTEQ5F3 0.02 ZEUS HERA II: 0.4 MRST2004FF3 D + , D 0 , D s + D* H1 (prel.) HERA II: D* VTX ZEUS (prel.) HERA II: 0.01 D + 0.2 D* µ 0 0 Q 2 = 60 GeV 2 Q 2 = 130 GeV 2 Q 2 = 200 GeV 2 11 GeV 2 18 GeV 2 30 GeV 2 0.1 0.4 0.05 0.2 0 0 -4 -3 -2 -4 -3 -2 Q 2 = 650 GeV 2 10 10 10 x 10 10 10 60 GeV 2 130 GeV 2 500 GeV 2 x 0.04 H1 (Prel.) HERA I+II VTX 0.4 0.03 ZEUS (Prel.) HERA II 39 pb -1 (03/04) µ ZEUS (Prel.) HERA II 125 pb -1 (05) µ 0.02 0.2 MSTW08 (Prel.) 0.01 CTEQ6.6 0 CTEQ5F3 0 -4 -3 -2 -5 -3 -5 -3 -5 -3 -1 10 10 10 10 10 10 10 10 10 10 x x [Kr¨ uger (H1 and Z. Coll.), 2008.] [Kr¨ uger (H1 and Z. Coll.), 2008.]

  9. 9 10 12 × 4 i x=0.00003, i=22 F 2 ⋅ 2 i H1 e + p x = 0.000050, i = 21 MRST2004 _ F 2cc x=0.00005, i=21 x = 0.000080, i = 20 10 11 10 6 ZEUS e + p x = 0.00013, i = 19 x=0.00007, i=20 MRST NNLO x = 0.00020, i = 18 x=0.00013, i=19 BCDMS MRST2004FF3 x = 0.00032, i = 17 10 10 x=0.00018, i=18 10 5 x = 0.00050, i = 16 NMC CTEQ6.5 x = 0.00080, i = 15 x=0.000197, i=17 10 9 x = 0.0013, i = 14 CTEQ5F3 x=0.00020, i=16 x = 0.0020, i = 13 10 4 10 8 x=0.00035, i=15 x = 0.0032, i = 12 x = 0.0050, i = 11 x=0.0005, i=14 10 7 10 3 x = 0.0080, i = 10 x=0.0006, i=13 x=0.0008, i=12 x = 0.013, i = 9 10 6 x = 0.020, i = 8 x=0.0010, i=11 10 2 x = 0.032, i = 7 10 5 x=0.0015, i=10 x = 0.050, i = 6 x=0.002, i=9 x = 0.080, i = 5 10 10 4 x=0.003, i=8 x = 0.13, i = 4 x=0.00316, i=7 x = 0.18, i = 3 10 3 1 x = 0.25, i = 2 x=0.005, i=6 10 2 x=0.006, i=5 x = 0.40, i = 1 -1 ZEUS D ✽ 10 x=0.012, 10 i=4 H1 D ✽ H1 Collaboration x=0.013, i=3 -2 x = 0.65, i = 0 H1 PDF 2000 H1 Displaced Track 1 10 x=0.030, i=2 extrapolation -1 x=0.032, 10 -3 i=1 10 2 3 1 10 10 10 2 3 4 5 Q 2 /GeV 2 1 10 10 10 10 10 Q 2 / GeV 2 [Thompson, 2007.] • High statistics for F 2 and F c ¯ c 2 . Accuracy will increase in the future. • F c ¯ 2 ( x, Q 2 ) ∼ 20 − 40 % of F 2 ( x, Q 2 ) for small values of x , but different scaling violations. c

  10. 10 Splitting Functions • The scaling violations are described by the splitting functions P ij ( x, a s ). • They describe the probability to find a parton i being radiated from parton j and carrying its momentum fraction x . • They are related to the anomalous dimensions via a Mellin–Transform: � 1 dzz N − 1 f ( z ) , γ ij ( N, a s ) := − M [ P ij ]( N, a s ) . M [ f ]( N ) := 0 • The splitting functions govern the scale–evolution of the parton densities.        Σ( N, Q 2 )  Σ( N, Q 2 )  γ qq γ qg d  ⊗  , = −  d ln Q 2 G ( N, Q 2 ) G ( N, Q 2 ) γ gq γ gg d d ln Q 2 q NS ( N, Q 2 ) − γ NS = ⊗ q NS . qq • The singlet light flavor density is defined by n f � ( f i ( n f , µ 2 ) + ¯ Σ( n f , µ 2 ) f i ( n f , µ 2 )) . = i =1 • The anomalous dimensions are presently known at NNLO [Moch, Vermaseren, Vogt, 2004.] )

  11. 11 Theory Status of Heavy Quark Corrections Leading Order : F 2 ,L ( x, Q 2 ) [Witten, 1976; Babcock, Sivers, 1978; Shifman, Vainshtein, Zakharov, 1978; Leveille, Weiler, 1979; Gl¨ uck, Reya, 1979; Gl¨ uck, Hoffmann, Reya, 1982.] Leading Order : g 1 ( x, Q 2 ) [Watson, 1982; Gl¨ uck, Reya, Vogelsang, 1991; Vogelsang, 1991] Leading Order : g 2 ( x, Q 2 ) [Bl¨ umlein, Ravindran, van Neerven, 2003] Soft Resummation: F 2 ,L ( x, Q 2 ) [ Laenen & Moch, 1998; Alekhin & Moch, 2008] Next-to-Leading Order : F 2 ,L ( x, Q 2 ) [Laenen, Riemersma, Smith, van Neerven, 1993, 1995] asymptotic: [Buza, Matiounine, Smith, Migneron, van Neerven, 1996; Bierenbaum, Bl¨ umlein, S.K., 2007] Mellin–space expressions: [Alekhin, Bl¨ umlein, 2003.] . Next-to-Leading Order : g 1 ( x, Q 2 ) asymptotic: [Buza, Matiounine, Smith, Migneron, van Neerven, 1997; Bierenbaum, Bl¨ umlein, S.K., 2009] Next-to-Next-to-Leading Order : F L ( x, Q 2 ) asymptotic: [Bl¨ umlein, De Freitas, S.K., van Neerven, 2006.] O ( α 3 s ) : Light flavor Wilson coefficients: [Moch, Vermaseren, Vogt, 2005.] = ⇒ 3-loop heavy quark corrections needed to reach the same accuracy as for the light flavor contributions.

  12. 12 Need for the Calculation: • Heavy flavor (charm) contributions to DIS structure functions are rather large [20–40 % at lower values of x ] . • Increase in accuracy of the perturbative description of DIS structure functions. QCD analysis and determination of Λ QCD , resp. α s ( M 2 ⇐ ⇒ Z ), from DIS data: δα s /α s < 1 %. Z ) = 0 . 1141 +0 . 0020 (Recent NS N 3 LO analysis: α s ( M 2 − 0 . 0022 = ⇒ δα s /α s ≈ 2% [Bl¨ ottcher, Guffanti, 2007] .) umlein, B¨ ⇐ ⇒ Precise determination of the gluon and sea quark distributions. Derivation of variable flavor number scheme for heavy quark production to O ( a 3 ⇐ ⇒ s ). • Calculation of the heavy flavor Wilson coefficients to higher orders for Q 2 ≥ 25 GeV 2 [sufficient in many applications]. Goal: • First recalculation of the fermionic contributions to the NNLO anomalous dimensions.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend