modeling evolution of molecules
play

Modeling Evolution of Molecules New Variations of an Old Theme - PowerPoint PPT Presentation

Modeling Evolution of Molecules New Variations of an Old Theme Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Minisymposium on Evolutionary Dynamics Utrecht,


  1. N = 4 n N S < 3 n Criterion: Minimum free energy (mfe) Rules: _ ( _ ) _ � { AU , CG , GC , GU , UA , UG } A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  2. One-error neighborhood GUUAAUCAG GUAAAUCAG GUGAAUCAG GCCAAUCAG GUCUAUCAG GGCAAUCAG GUCGAUCAG GACAAUCAG GUCCAUCAG CUCAAUCAG GUCAUUCAG UUCAAUCAG G A C U G A C U G GUCAAUCAG AUCAAUCAG GUCACUCAG GUCAAUCAC GUCAAACAG GUCAAUCAU G U C A A GUCAAUCAA G C A G GUCAACCAG G U GUCAAUAAG C A G A G U U GUCAAUCUG U C C G A C C U A G A C U A A C The surrounding of U A G U U G A G GUCAAUCAG in sequence space G A G

  3. GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  4. GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G G A U C U G A C CC C A GG G G C U UGGA A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  5. G GGCUAUCGUACGUUUACCC AAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G G A U C U G A C CC C A GG G U G U G C A U A C G U A A A A G G C U A C U A C G U U C G U A C A G A C A G C G G C G U A G U G U A C G U C A A U C U A C G G C A C G U G G A C A G G C U G U U A G C U UGGA A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  6. U C A G U G C G G U A C C G A U G U G U U U A A C C C G G A C C G C A AA G C A U G C G U U U A C G G GGCUAUCGUACGUUUACCC AAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G G A U C U G A C G CC C A GG G C U UGGA A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  7. U C A A G G C U U C G U C C C C A G G G A G G G G U A C C G G A C UGG U U G U U G A U U U U A A C C UACG U G C C G U G A C A C C G G C A U AAG UC AA G C U A A U U C G C G U C U C AA U A C G U G GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG CCCAGGCAUUGGACG GGCUAUCGUACGUUUACCC AAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G G A U C U G A C G CC C A GG G C U UGGA A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  8. U C A A G G C U U C G U C C C C A G G G A G G G G U A C C G G A C UGG U U G U U G A U U U U A A C C UACG U G C C G U G A C A C C G G C A U AAG UC AA G C U A A U U C G C G U C U C AA U A C G U G GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG CCCAGGCAUUGGACG GGCUAUCGUACGUUUACCC AAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G G A U C U G A C C G CC C A GG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCA UGGACG G C U UGGA A U C UACG U G U C A A G C C U U AAG UC C C C AG G G A G U G A U G C G C C C AA C UGG A U A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  9. U C A A G G C U U C G U C C C C A G G G A G G G G U A C C G G A C UGG U U G U U G A U U U U A A C C UACG U G C C G U G A C A C C G G C A U AAG UC AA G C U A A U U C G C G U C U C AA U A C G U G GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG CCCAGGCAUUGGACG GGCUAUCGUACGUUUACCC AAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G G A U C U G A C C G G CC C A GG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCA UGGACG GGCUAUCGUACGU UACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G C U UGGA A U A C G C G UACG U G G U C A U A G G C C A U C G U U AAG UC C C C AG G G A G U C G A U G G C U G G A C C C AA A C UGG A U C A U U ACC C C G UACG U G G U U G C A A G U U C U AAG UC G G U A C U U C A G C C AA U U A U C C C G C A A A A One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  10. GGCUAUCGUA U GUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUU A GACG GGCUAUCGUACGUUUAC U CAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACG C UUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGC C AUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGU G UACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUA A CGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCC U GGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCA C UGGACG G G A U GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG U CCCAGGCAUUGGACG C U GGCUA G CGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G A GGCUAUCGUACGUUUACCC G AAAGUCUACGUUGGACCCAGGCAUUGGACG C G CC C A GG GGCUAUCGUACGUUUACCCAAAAG C CUACGUUGGACCCAGGCAUUGGACG G C U UGGA A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule in sequence and shape space

  11. Number Mean Value Variance Std.Dev. Total Hamming Distance: 150000 11.647973 23.140715 4.810480 Nonzero Hamming Distance: 99875 16.949991 30.757651 5.545958 Degree of Neutrality: 50125 0.334167 0.006961 0.083434 Number of Structures: 1000 52.31 85.30 9.24 1 (((((.((((..(((......)))..)))).))).))............. 50125 0.334167 2 ..(((.((((..(((......)))..)))).)))................ 2856 0.019040 3 ((((((((((..(((......)))..)))))))).))............. 2799 0.018660 4 (((((.((((..((((....))))..)))).))).))............. 2417 0.016113 5 (((((.((((.((((......)))).)))).))).))............. 2265 0.015100 6 (((((.(((((.(((......))).))))).))).))............. 2233 0.014887 7 (((((..(((..(((......)))..)))..))).))............. 1442 0.009613 8 (((((.((((..((........))..)))).))).))............. 1081 0.007207 9 ((((..((((..(((......)))..))))..)).))............. 1025 0.006833 10 (((((.((((..(((......)))..)))).))))).............. 1003 0.006687 11 .((((.((((..(((......)))..)))).))))............... 963 0.006420 12 (((((.(((...(((......)))...))).))).))............. 860 0.005733 13 (((((.((((..(((......)))..)))).)).)))............. 800 0.005333 14 (((((.((((...((......))...)))).))).))............. 548 0.003653 15 (((((.((((................)))).))).))............. 362 0.002413 16 ((.((.((((..(((......)))..)))).))..))............. 337 0.002247 G G A U 17 (.(((.((((..(((......)))..)))).))).).............. 241 0.001607 C U 18 (((((.(((((((((......))))))))).))).))............. 231 0.001540 G A 19 ((((..((((..(((......)))..))))...))))............. 225 0.001500 C G CC C A GG 20 ((....((((..(((......)))..)))).....))............. 202 0.001347 G C U UGGA A U C UACG U G U C A G U AAG UC U A U C Shadow – Surrounding of an RNA structure in shape space – AUGC alphabet C C AA

  12. 1. Replication and mutation 2. Quasispecies and error thresholds 3. Fitness landscapes and randomization 4. Lethal mutations 5. Ruggedness of natural landscapes 6. Simulation of stochastic phenomena

  13. Structure of Phenylalanyl-tRNA as andomly chosen target structure initial sequence

  14. Evolution in silico W. Fontana, P. Schuster, Science 280 (1998), 1451-1455

  15. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  16. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  17. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  18. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  19. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  20. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  21. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  22. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  23. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  24. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  25. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  26. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  27. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  28. Replication rate constant (Fitness) : f k = � / [ � + � d S (k) ] � d S (k) = d H (S k ,S � ) Selection pressure : The population size, N = # RNA moleucles, is determined by the flux: ≈ ± N t N N ( ) Mutation rate : p = 0.001 / Nucleotide � Replication The flow reactor as a device for studying the evolution of molecules in vitro and in silico .

  29. In silico optimization in the flow reactor: Evolutionary Trajectory

  30. 28 neutral point mutations during a long quasi-stationary epoch Transition inducing point mutations Neutral point mutations leave the change the molecular structure molecular structure unchanged Neutral genotype evolution during phenotypic stasis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend