minimization of sensor activation in decentralized fault
play

Minimization of Sensor Activation in Decentralized Fault Diagnosis - PowerPoint PPT Presentation

Minimization of Sensor Activation in Decentralized Fault Diagnosis of Discrete Event Systems Xiang Yin and Stphane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/15 X.Yin & S.Lafortune


  1. Minimization of Sensor Activation in Decentralized Fault Diagnosis of Discrete Event Systems Xiang Yin and StΓ©phane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  2. Introduction 𝑑 2 3 0 4 𝑑 𝑑 1 5 Plant G 𝑄 𝑄 2 1 𝑄 1 (𝑑) 𝑄 2 (𝑑) Agent 1 𝐸 1 Agent 2 𝐸 2 Coordinator Fault Alarm 1/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  3. Introduction 𝑑 2 3 0 4 𝑑 𝑑 1 5 Plant G Ξ© 1 Ξ© 2 𝑄 𝑄 2 1 𝑄 Ξ© 1 (𝑑) 𝑄 Ξ© 2 (𝑑) Agent 1 𝐸 1 Agent 2 𝐸 2 Coordinator Fault Alarm 1/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  4. System Model 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) is a deterministic FSA β€’ 𝑅 is the finite set of states; β€’ Ξ£ is the finite set of events; β€’ πœ€: 𝑅 Γ— Ξ£ β†’ 𝑅 is the partial transition function; β€’ π‘Ÿ 0 is the initial state. 2/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  5. System Model 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) is a deterministic FSA β€’ 𝑅 is the finite set of states; β€’ Ξ£ is the finite set of events; β€’ πœ€: 𝑅 Γ— Ξ£ β†’ 𝑅 is the partial transition function; β€’ π‘Ÿ 0 is the initial state. Sensor activation policy Ξ© = (𝐡, 𝑀) , where 𝐡 = (𝑅 𝐡 , Ξ£ 𝑝 , πœ€ 𝐡 , π‘Ÿ 0,𝐡 ) and 𝑀: 𝑅 𝐡 β†’ 2 Ξ£ 𝑝 ; - βˆ— - Projection 𝑄 Ξ© : β„’ 𝐻 β†’ Ξ£ 𝑝 𝐻 𝑑 State estimate β„° Ξ© - , 𝐽 𝑦 ∈ 2 𝑅 . 𝐡 𝑦 ∈ 𝑅 𝐡 - Observer 𝑃𝑐𝑑 Ξ© 𝐻 = π‘Œ, Ξ£ 𝑝 , 𝑔, 𝑦 0 , and 𝑦 = 𝐽 𝑦 , 𝐡 𝑦 𝑝 𝑔 𝑝 ( 1,3,5,7 , 1) 2 1 3 𝑝 𝑐 𝑔 𝑝 𝑏 𝑏 ( 2,4,7 , 2) 1 2 3 4 5 𝑏 𝑏 𝑐 *𝑝+ *𝑏+ βˆ… 𝑝 𝑝 ( 6 , 3) 6 7 𝑯 𝛁 𝑷𝒄𝒕 𝜡 𝑯 2/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  6. Decentralized Diagnosis Problem = Ξ© 1 , Ξ© 2 with Ξ£ 𝑝,1 and Ξ£ 𝑝,2 β€’ Two agents ℐ = *1,2+ , Ξ© β€’ A fault event 𝑓 𝑒 ∈ Ξ£ βˆ– (βˆͺ 𝑗=1,2 Ξ£ 𝑝,𝑗 ) Ξ¨ 𝑓 𝑒 = *𝑑𝑓 𝑒 ∈ β„’ 𝐻 : 𝑑 ∈ Ξ£ βˆ— + β€’ 3/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  7. Decentralized Diagnosis Problem = Ξ© 1 , Ξ© 2 with Ξ£ 𝑝,1 and Ξ£ 𝑝,2 β€’ Two agents ℐ = *1,2+ , Ξ© β€’ A fault event 𝑓 𝑒 ∈ Ξ£ βˆ– (βˆͺ 𝑗=1,2 Ξ£ 𝑝,𝑗 ) Ξ¨ 𝑓 𝑒 = *𝑑𝑓 𝑒 ∈ β„’ 𝐻 : 𝑑 ∈ Ξ£ βˆ— + β€’ β€’ K -Codiagnosability: and 𝑓 𝑒 if A live language β„’ 𝐻 is said to be 𝐿 -codiagnosable w.r.t. Ξ© β€’ π‘Œ is the finite set of states; (βˆ€π‘‘ ∈ Ξ¨(𝑓 𝑒 ))(βˆ€π‘’ ∈ β„’ 𝐻 /𝑑), 𝑒 β‰₯ 𝐿 β‡’ 𝐷𝐸- β€’ 𝐹 is the finite set of events; where the codiagnosability condition 𝐷𝐸 is β€’ 𝑔: π‘Œ Γ— 𝐹 β†’ π‘Œ is the partial transition function; β€’ π‘Œ 0 is the set of initial states. βˆƒπ‘— ∈ *1,2+ βˆ€πœ• ∈ β„’ 𝐻 𝑄 Ξ© 𝑗 π‘₯ = 𝑄 Ξ© 𝑗 𝑑𝑒 β‡’ 𝑓 𝑒 ∈ πœ• . 3/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  8. Problem Formulation Decentralized Minimization Problem β€’ Let 𝐻 be the system with fault event 𝑓 𝑒 . For each agent 𝑗 ∈ 1,2 , let Ξ£ 𝑝,𝑗 βŠ† Ξ£ be the set of observable events. Find a sensor activation policy βˆ— = ,Ξ© 1 β€’ π‘Œ is the finite set of states; βˆ— , Ξ© 2 βˆ— - such that Ξ© β€’ 𝐹 is the finite set of events; βˆ— C1. β„’ 𝐻 is 𝐿 -codiagnosable w.r.t. Ξ© and e d ; β€’ 𝑔: π‘Œ Γ— 𝐹 β†’ π‘Œ is the partial transition function; β€² < Ξ© βˆ— βˆ— that satisfies (C1). C2. Ξ© is minimal, i.e., there does not exist another Ξ© β€’ π‘Œ 0 is the set of initial states. β€² < Ξ© βˆ— is defined in terms of set inclusion. β€’ Ξ© 4/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  9. Literature Review Decentralized Fault Diagnosis β€’ Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems, 10(1-2), 33-86. β€’ Qiu, W., & Kumar, R. (2006). Decentralized failure diagnosis of discrete event systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 36(2), 384-395. β€’ Kumar, R., & Takai, S. (2009). Inference-based ambiguity management in decentralized decision-making: Decentralized diagnosis of discrete-event systems. IEEE Transactions on Automation Science and Engineering, 6(3), 479-491. β€’ Moreira, M. V., Jesus, T. C., & Basilio, J. C. (2011). Polynomial time verification of decentralized diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 56(7), 1679-1684. Dynamic Sensor Activation Problem β€’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β€’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β€’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β€’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β€’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β€’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. 5/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  10. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  11. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝛁 𝟐 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  12. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  13. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  14. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  15. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  16. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  17. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  18. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  19. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  20. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? - Yes! 𝟐 𝟐 - Monotonicity property 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  21. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? - Yes! 𝟐 𝟐 - Monotonicity property 𝛁 𝟐 𝛁 πŸ‘ β€’ Minimal? βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  22. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? - Yes! 𝟐 𝟐 - Monotonicity property 𝛁 𝟐 𝛁 πŸ‘ β€’ Minimal? - Yes! - Logical optimal (set inclusion) βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend