mhd in a cylindrical shearing box
play

MHD in a Cylindrical Shearing Box Takeru K. Suzuki School of Arts - PowerPoint PPT Presentation

MHD in a Cylindrical Shearing Box Takeru K. Suzuki School of Arts & Science, U. Tokyo September 6th, 2018 Thanks to XC40@YITP & ATERUI@CfCA/NaOJ Accretion Disks Some Examples Accretion Disks around Black Holes Active Galactic


  1. MHD in a Cylindrical Shearing Box Takeru K. Suzuki School of Arts & Science, U. Tokyo September 6th, 2018 Thanks to XC40@YITP & ATERUI@CfCA/NaOJ

  2. Accretion Disks Some Examples • Accretion Disks around Black Holes • Active Galactic Nuclei (SMBH) • Galactic Disks • Protoplanetary Disks credit: NASA

  3. Ang. Mom. Transport & Mass Accretion 2 r Ω GM/r 2 r 0 , Ω 0 Central Star r, Ω

  4. Ang. Mom. Transport & Mass Accretion • If Ang. Mom. conserved: Ω = Ω 0 ( r 0 r ) 2 2 r Ω GM/r 2 r 0 , Ω 0 Central Star r, Ω

  5. Ang. Mom. Transport & Mass Accretion • If Ang. Mom. conserved: Ω = Ω 0 ( r 0 r ) 2 • Centrifugal force at r : 2 r Ω 0 ( r 0 r Ω 2 = r 0 Ω 2 r ) 3 GM/r 2 r 0 , Ω 0 Central Star r, Ω

  6. Ang. Mom. Transport & Mass Accretion • If Ang. Mom. conserved: Ω = Ω 0 ( r 0 r ) 2 • Centrifugal force at r : 2 r Ω 0 ( r 0 r Ω 2 = r 0 Ω 2 r ) 3 GM/r 2 r 0 , Ω 0 • Gravity at r : Central ( r 0 GM r ) 2 Star r, Ω r 2 0

  7. Ang. Mom. Transport & Mass Accretion • If Ang. Mom. conserved: Ω = Ω 0 ( r 0 r ) 2 • Centrifugal force at r : 2 r Ω 0 ( r 0 r Ω 2 = r 0 Ω 2 r ) 3 GM/r 2 r 0 , Ω 0 • Gravity at r : Central ( r 0 GM r ) 2 Star r, Ω r 2 0 • If r 0 Ω 2 0 = GM / r 2 0 , ⇒ r Ω 2 > GM / r 2

  8. Ang. Mom. Transport & Mass Accretion • If Ang. Mom. conserved: Ω = Ω 0 ( r 0 r ) 2 • Centrifugal force at r : 2 r Ω 0 ( r 0 r Ω 2 = r 0 Ω 2 r ) 3 GM/r 2 r 0 , Ω 0 • Gravity at r : Central ( r 0 GM r ) 2 Star r, Ω r 2 0 • If r 0 Ω 2 0 = GM / r 2 0 , ⇒ r Ω 2 > GM / r 2 • Mass does NOT accrete. (Rayleigh Criterion)

  9. Turbulence in Accretion Disks Turbulence ⇒ Macroscopic (effective) Viscosity • Outward Transport of Angular Momentum • Inward Accretion of Matters Exchange fluid elements by ‘‘stirring with a spoon’’

  10. MHD in an Accretion Disk Suzuki & Inutsuka 2014

  11. Magneto-Rotational Instability (MRI) –linear analyses– Balbus & Hawley 1991 ∂ρ ∂ t + ∇ · ( ρ � ) = 0 8 π ) − ( B · ∇ ) B ρ ∇ ( p + B 2 d � dt + 1 + ∇ Φ = 0 4 πρ ∂ B ∂ t = ∇ × ( � × B − η ∇ × B ) dt = − p ∇ · � + η ρ de 4 π | ∇ × B | 2 • axisymmetric perturbation: ∝ exp( − i ω t + ik r r + ik z z ) • Gravity by a central star ∇ Φ ≈ ( GM r 2 , 0 , GMz r 3 ) • Assuming B 0 = (0 , 0 , B z , 0 ) , ideal MHD ( η = 0 ), & incompressive ( k r δ � r + k z δ � z = 0 ) Dispersion relation : z + κ 2 k 2 k 4 ω 4 − (2 � 2 z + ( κ 2 − 4 Ω 2 ) � 2 A , z k 2 k 2 ) ω 2 + � 4 z A , z k 4 z k 2 = 0 A , z where κ : epicycle frequency ( = Ω for Kepler rotation) � � A , z = B z , 0 / 4 πρ

  12. MRI –Dispersion Relation– Sano & Miyama 1999 • Always unstable for the weak B ( β = 8 π p B 2 � 1 ) • The growth rate ∼ Ω − 1

  13. Magneto-Rotational Instability (MRI) A fluid element moves outward (Connection through B-field) Center The Fluid element rotates faster than A.M. conservation Centrifugal F. > Gravity (Unstable) Unstable under • Weak B-fields • (inner-fast) Differential Rotation Velikov (1959); Chandrasekhar (1960); Balbus & Hawley (1991)

  14. MHD in Cartesian Shearing Box (CaSB) Hawley, Gammie, & Balbus 1995

  15. MHD in Cartesian Shearing Box (CaSB) • Local Cartesian coordinate with co-rotating with Ω 0 . (neglect curvature) Hawley, Gammie, & Balbus 1995

  16. MHD in Cartesian Shearing Box (CaSB) • Local Cartesian coordinate with co-rotating with Ω 0 . (neglect curvature) • x = r − r 0 ; y ↔ φ -direction Hawley, Gammie, & Balbus 1995

  17. MHD in Cartesian Shearing Box (CaSB) • Local Cartesian coordinate with co-rotating with Ω 0 . (neglect curvature) • x = r − r 0 ; y ↔ φ -direction � GM / r 3 ) • Basic equations for Keplerian rotation ( Ω 0 = ∂ρ ∂ t + ∇ · ( ρ � ) = 0 8 π ) + ( B · ∇ ) B x ρ ∇ x ( p + B 2 ∂ � x ∂ t = − 1 + 2 Ω 0 � y + 3 Ω 2 0 x 4 πρ ( B · ∇ ) B y ∂ � y ρ ∇ y ( p + B 2 ∂ t = − 1 Hawley, Gammie, & Balbus 1995 8 π ) + − 2 Ω 0 � x 4 πρ 8 π ) + ( B · ∇ ) B z ∂ � z ρ ∇ z ( p + B 2 ∂ t = − 1 − Ω 2 0 z 4 πρ ∂ B ∂ t = ∇ × ( � × B − η ∇ × B ) ∇ · B = 0

  18. MHD in Cartesian Shearing Box (CaSB) • Local Cartesian coordinate with co-rotating with Ω 0 . (neglect curvature) • x = r − r 0 ; y ↔ φ -direction � GM / r 3 ) • Basic equations for Keplerian rotation ( Ω 0 = ∂ρ ∂ t + ∇ · ( ρ � ) = 0 8 π ) + ( B · ∇ ) B x ρ ∇ x ( p + B 2 ∂ � x ∂ t = − 1 + 2 Ω 0 � y + 3 Ω 2 0 x 4 πρ ( B · ∇ ) B y ∂ � y ρ ∇ y ( p + B 2 ∂ t = − 1 Hawley, Gammie, & Balbus 1995 8 π ) + − 2 Ω 0 � x 4 πρ 8 π ) + ( B · ∇ ) B z ∂ � z ρ ∇ z ( p + B 2 ∂ t = − 1 − Ω 2 0 z 4 πρ ∂ B ∂ t = ∇ × ( � × B − η ∇ × B ) ∇ · B = 0 • An Isothermal Equation of State

  19. MHD in Cartesian Shearing Box (CaSB) • Local Cartesian coordinate with co-rotating with Ω 0 . (neglect curvature) • x = r − r 0 ; y ↔ φ -direction � GM / r 3 ) • Basic equations for Keplerian rotation ( Ω 0 = ∂ρ ∂ t + ∇ · ( ρ � ) = 0 8 π ) + ( B · ∇ ) B x ρ ∇ x ( p + B 2 ∂ � x ∂ t = − 1 + 2 Ω 0 � y + 3 Ω 2 0 x 4 πρ ( B · ∇ ) B y ∂ � y ρ ∇ y ( p + B 2 ∂ t = − 1 Hawley, Gammie, & Balbus 1995 8 π ) + − 2 Ω 0 � x 4 πρ 8 π ) + ( B · ∇ ) B z ∂ � z ρ ∇ z ( p + B 2 ∂ t = − 1 − Ω 2 0 z 4 πρ ∂ B ∂ t = ∇ × ( � × B − η ∇ × B ) ∇ · B = 0 • An Isothermal Equation of State • Steady-state solution • B = (0 , B y , B z ) & � = (0 , − 3 2 Ω 0 x , 0) • ρ = ρ 0 exp( − z 2 / H 2 ) ( H 2 ≡ 2 c 2 s / Ω 2 0 ): hydrostatic equilibrium

  20. Cartesian Shearing Box Simulations Hawley et al. 1995; Matsumoto & Tajima 1995; ... Suzuki & Inutsuka 2009

  21. Applications of CaSB • PIC simulation in CaSB Hoshino 2013; 2015; Shirakawa & Hoshino 2014 • MHD + non-thermal particles Kimura+ 2016

  22. Some Disadvantages of CaSB

  23. Some Disadvantages of CaSB • Neglect the Curvature

  24. Some Disadvantages of CaSB • Neglect the Curvature • Symmetry to the ± x direction The central star can be located on either left or right side

  25. Some Disadvantages of CaSB • Neglect the Curvature • Symmetry to the ± x direction The central star can be located on either left or right side • No Gas Accretion

  26. A New Aproach

  27. A New Aproach • Break the Symmetry

  28. A New Aproach • Break the Symmetry • Introduce the Curvature

  29. A New Aproach • Break the Symmetry • Introduce the Curvature ⇒ can handle the net accretion ?

  30. A New Aproach • Break the Symmetry • Introduce the Curvature ⇒ can handle the net accretion ? ⇒ Let’s try “Cylindrical Shearing Box (CySB)”

  31. Cylindrical Shearing Box (CySB)

  32. Cylindrical Shearing Box (CySB) Key : Boundary Condition at R ±

  33. Cylindrical Shearing Box (CySB) Key : Boundary Condition at R ± Radial Boundary Condition ⇐ Conservation Laws of Mass+Momentum+(Energy)+ B

  34. Equations

  35. Equations • Mass: ∂ t ρ + R − 1 ∂ R ( ρ � R R ) + ∂ φ ( ··· ) + ∂ z ( ··· ) = 0

  36. Equations • Mass: ∂ t ρ + R − 1 ∂ R ( ρ � R R ) + ∂ φ ( ··· ) + ∂ z ( ··· ) = 0 • Momentum– R : ∂ t ( ρ � R ) + R − 1 ∂ R ( ρ � 2 R R ) + ··· = 0

  37. Equations • Mass: ∂ t ρ + R − 1 ∂ R ( ρ � R R ) + ∂ φ ( ··· ) + ∂ z ( ··· ) = 0 • Momentum– R : ∂ t ( ρ � R ) + R − 1 ∂ R ( ρ � 2 R R ) + ··· = 0 • Momentum– φ (Angular Momentum): ∂ t ( ρ � φ R ) + ∂ R [( ρ � R � φ + B R B φ / 4 π ) R 2 ] + ··· = 0

  38. Equations • Mass: ∂ t ρ + R − 1 ∂ R ( ρ � R R ) + ∂ φ ( ··· ) + ∂ z ( ··· ) = 0 • Momentum– R : ∂ t ( ρ � R ) + R − 1 ∂ R ( ρ � 2 R R ) + ··· = 0 • Momentum– φ (Angular Momentum): ∂ t ( ρ � φ R ) + ∂ R [( ρ � R � φ + B R B φ / 4 π ) R 2 ] + ··· = 0 • Momentum– z : ∂ t ( ρ � z ) + R − 1 ∂ R ( ρ � R � z R ) + ··· = 0

  39. Equations • Mass: ∂ t ρ + R − 1 ∂ R ( ρ � R R ) + ∂ φ ( ··· ) + ∂ z ( ··· ) = 0 • Momentum– R : ∂ t ( ρ � R ) + R − 1 ∂ R ( ρ � 2 R R ) + ··· = 0 • Momentum– φ (Angular Momentum): ∂ t ( ρ � φ R ) + ∂ R [( ρ � R � φ + B R B φ / 4 π ) R 2 ] + ··· = 0 • Momentum– z : ∂ t ( ρ � z ) + R − 1 ∂ R ( ρ � R � z R ) + ··· = 0 • Induction eq.– φ ∂ t B φ = ∂ z ( ··· ) − ∂ R ( � R B φ − � φ B R )

  40. Equations • Mass: ∂ t ρ + R − 1 ∂ R ( ρ � R R ) + ∂ φ ( ··· ) + ∂ z ( ··· ) = 0 • Momentum– R : ∂ t ( ρ � R ) + R − 1 ∂ R ( ρ � 2 R R ) + ··· = 0 • Momentum– φ (Angular Momentum): ∂ t ( ρ � φ R ) + ∂ R [( ρ � R � φ + B R B φ / 4 π ) R 2 ] + ··· = 0 • Momentum– z : ∂ t ( ρ � z ) + R − 1 ∂ R ( ρ � R � z R ) + ··· = 0 • Induction eq.– φ ∂ t B φ = ∂ z ( ··· ) − ∂ R ( � R B φ − � φ B R ) • Induction eq.– z ∂ t B z = R − 1 ∂ R [( � z B R − � R B z ) R ] − ∂ φ ( ··· )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend