measurements of reactor neutrinos at long baselines
play

Measurements of Reactor Neutrinos at Long Baselines: KamLAND and - PowerPoint PPT Presentation

Measurements of Reactor Neutrinos at Long Baselines: KamLAND and Beyond Brian Kurt Fujikawa Lawrence Berkeley National Laboratory 2011 APS April Meeting 2011-05-01 1 Reactor Anti-Neutrino Disappearance Experiments Beta Decay of Neuron Rich


  1. Measurements of Reactor Neutrinos at Long Baselines: KamLAND and Beyond Brian Kurt Fujikawa Lawrence Berkeley National Laboratory 2011 APS April Meeting 2011-05-01 1

  2. Reactor Anti-Neutrino Disappearance Experiments Beta Decay of Neuron Rich Fission Fragments ( A, Z ) → ( A, Z + 1) + e − + ν e → → ν e + p → n + e + → ν µ + p → n + µ + → ν τ + p → n + τ + N e + N µ + = 0 ν e N τ + = 0 P ( ν e → ν e ) = 1 − sin 2 2 θ sin 2 1 . 27∆ m 2 L E L 2011-05-01 2

  3. Long Baseline Reactor Neutrino Experiments 2011-05-01 3

  4. Large Mixing Angle (LMA) Solution to the Solar Neutrino Problem 1.4 1.2 1.0 N obs /N no-osc 0.8 ILL 0.6 LMA Savannah River Bugey 0.4 Rovno Prediction Goesgen Krasnoyarsk 0.2 Palo Verde Chooz 0.0 10 1 10 2 10 3 10 4 10 5 Distance to Reactor (m) (2004) http://hitoshi.berkeley.edu/neutrino/ 2011-05-01 4

  5. Updated Reactor Neutrino Spectrum Predictions arXiv:1101.2663 arXiv:1101.2755 Th. Lasserre (CEA-Saclay, Irfu APC & SPP) 1.4 1.2 1.0 N obs /N no-osc 0.8 ILL 0.6 Savannah River Bugey 0.4 Rovno Goesgen Krasnoyarsk 0.2 Palo Verde Chooz 0.0 10 1 10 2 10 3 10 4 10 5 Distance to Reactor (m) 2011-05-01 5

  6. Motivation • Test Solar LMA solution with a terrestrial experiment that uses a man-made neutrino source. • The LMA region is very “flat” with respect to Δ m 2 from the Solar Neutrino experiments alone. Long Baseline Reactor Neutrino experiment compliment the Solar Neutrino experiments by measuring Δ m 2 . 2011-05-01 6

  7. Scaling Short Baseline Reactor Neutrino Experiments to Long Baselines 2011-05-01 7

  8. ν e + p → e + + n ¯ ¯ ν e n � ∆ T � ∼ 200 µs p p n np → d γ e + E γ = 2 . 2 MeV e − e + γ γ E ¯ ν e ∼ E e + + 0 . 8 MeV Backgrounds: • accidental coincidences • spallation products from cosmic-ray μ ‘s ‣ 9 Li/ 8 He β -delayed neutron emitters • neutrons produced externally by μ ‘s • ( α ,n) reactions 2011-05-01 8

  9. Geoneutrino Background (or Signal)? • Geoneutrinos is a background when measuring Reactor Neutrinos • Ironically, Reactor Neutrinos are a background when measuring Geoneutrinos • Simultaneous measurement of Geo and Reactor Neutrinos 2011-05-01 9

  10. Long Baseline Reactor Neutrino Experiments Require: 1. High Reactor Power 2. Large Target Mass 3. Low Background ‣ Underground to shield from cosmic ray μ ’s ‣ Radiopurity 2011-05-01 10

  11. 泊 東海第二 カムランド (km) 距離 川内 女川 福島第二 福島第一 柏崎刈羽 ふげん 志賀 敦賀 大飯 美浜 高浜 島根 伊方 玄海 浜岡 LMA and KamLAND 9 x10 7000 ) 2 fission/cm 6 U235 6000 Pu239 5000 U238 1.4 12 Pu241 Fission number flux(10 4000 4 1.2 3000 2 2000 1.0 N obs /N no-osc 1000 0.8 0 0 0 100 200 300 400 500 600 700 800 900 1000 ILL 0.6 Savannah River Bugey 0.4 Rovno Goesgen 180km Krasnoyarsk 0.2 Palo Verde Chooz 0.0 10 1 10 2 10 3 10 4 10 5 Distance to Reactor (m) 180 km 2011-05-01 11

  12. The KamLAND Detector 1000m rock = 2700 mwe long. 137 ◦ 18 � 43 . 495 �� lat. 36 ◦ 25 � 35 . 562 �� alt. 358 m 2011-05-01 12

  13. 1st KamLAND Reactor Result 1.4 1.2 1.0 N obs /N no-osc 0.8 N obs − N bkgd ILL = 0 . 611 ± 0 . 085 stat ± 0 . 041 syst 0.6 Savannah River N no − osc Bugey Rovno 0.4 Goesgen Krasnoyarsk Palo Verde 0.2 Chooz KamLAND 0.0 10 1 10 2 10 3 10 4 10 5 Distance to Reactor (m) 2011-05-01 13

  14. Latest (4th) KamLAND Reactor Neutrino Result Please see R7.00002: “A three-flavor oscillation analysis of a new KamLAND data set” Thomas O’Donnell (1:42 pm, May 2, Grand E) 2011-05-01 14

  15. Exposure: • 3.49 × 10 42 target-proton-years Candidate Event Selection: • Delayed coincidence pairs (in time & space) • Prompt energy window • Delayed energy window (near 2.2 MeV or 4.7 MeV) • Likelihood discriminator • Isolation from cosmic ray μ ’s ( μ veto) 2011-05-01 15

  16. Events expected from reactors (no oscillation) 2879 +/- 118 Events expected from background (ex. geo-nu) 325.9 +/- 26.1 Observed events 2106 2011-05-01 16

  17. ( α ,n) Background α np → np 13 C p n � ∆ T � ∼ 200 µs p n 16 O ∗ np → d γ γ /e + − e − • Primarily from 210 Po α ’s • 2007-2009 KamLAND liquid scintillator purification campaigns (in preparation for solar 7 Be neutrino detection) • Reduced 210 Po contamination by a factor of 20. • ( α ,n) backgrounds are greatly reduced for the post-purification period. 2011-05-01 17

  18. 3-Flavor Analysis PMNS Matrix Survival Probability at KamLAND 2011-05-01 18

  19. Matter Effects from Propagating Through the Earth 2011-05-01 19

  20. Un-binned Maximum Likelihood Analysis Include Time Depend Effects: • Fluctuations in reactor power. • Pre/Post-Purification changes in background, e.g. ( α ,n). • Pre/Post-Purification changes in detector performance. 2011-05-01 20

  21. Systematic Error Table data set before purification / data set after purification 2011-05-01 21

  22. Results of the 3-Flavor Analysis 20 4 σ 15 2 χ 3 σ ∆ 10 2 σ 5 1 σ KamLAND Best Fit Solar KamLAND 2 1 2 3 4 (b) σ σ σ σ 95% C.L. 95% C.L. 99% C.L. 99% C.L. 1.8 99.73% C.L. 99.73% C.L. ) 2 1.6 best fit best fit eV 1.4 KamLAND+Solar -4 95% C.L. (10 1.2 99% C.L. 99.73% C.L. 21 1 2 best fit m ∆ 0.8 0.6 θ free 0.4 13 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 15 20 2 2 tan θ ∆ χ 12 2011-05-01 22

  23. Prompt Energy Distribution 100 Efficiency (%) Selection efficiency 80 60 KamLAND data 350 no-oscillation best-fit osci. 300 accidental Events/0.425MeV 16 13 C( ,n) O α 250 best-fit Geo ν e best-fit osci. + BG 200 + best-fit Geo ν e 150 100 50 0 0 1 2 3 4 5 6 7 8 E (MeV) p 2011-05-01 23

  24. Shape Distortion and Evidence for Neutrino Oscillations 1 Survival Probability 0.8 0.6 0.4 0.2 3- best-fit oscillation Data - BG - Geo ν ν e 2- best-fit oscillation ν 0 20 30 40 50 60 70 80 90 100 110 L /E (km/MeV) 0 ν e (L 0 = 180 km chosen for scale) 2011-05-01 24

  25. 2-Flavor/3-Flavor Analysis Comparison 2-Flavor 3-Flavor 20 20 4 σ 4 σ 15 15 2 2 χ χ 3 σ 3 σ ∆ 10 ∆ 10 5 2 σ 5 2 σ 1 σ 1 σ Solar KamLAND Solar KamLAND 2 2 1 2 3 4 1 2 3 4 (a) (b) σ σ σ σ σ σ σ σ 95% C.L. 95% C.L. 95% C.L. 95% C.L. 99% C.L. 99% C.L. 99% C.L. 99% C.L. 1.8 1.8 99.73% C.L. 99.73% C.L. 99.73% C.L. 99.73% C.L. ) ) 2 2 1.6 1.6 best-fit best-fit best fit best fit eV eV 1.4 KamLAND+Solar 1.4 KamLAND+Solar -4 -4 (10 95% C.L. (10 95% C.L. 1.2 1.2 99% C.L. 99% C.L. 99.73% C.L. 99.73% C.L. 21 21 1 1 2 2 best-fit best fit m m ∆ ∆ 0.8 0.8 0.6 0.6 θ = 0 θ free 0.4 0.4 13 13 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 15 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 5 10 15 20 2 2 2 2 tan θ ∆ χ tan θ ∆ χ 12 12 2011-05-01 25

  26. 0.2 Solar KamLAND 95% C.L. 95% C.L. 0.18 99% C.L. 99% C.L. 99.73% C.L. 99.73% C.L. 0.16 best-fit best-fit 0.14 KamLAND+Solar 95% C.L. 0.12 13 99% C.L. θ 99.73% C.L. 2 0.1 sin best-fit 0.08 0.06 0.04 0.02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 tan θ 12 2011-05-01 26

  27. Global Analysis 10 99.73% C.L. CHOOZ + Atmospheric + LBL 9 Global 8 7 r a l 6 o S Global: 2 + χ D 5 N ∆ A L 95% C.L. m 4 a Solar K 90% C.L. 3 2 D N A L 1 m a K 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 2 sin θ 13 2011-05-01 27

  28. Visualization of KamLAND’s Sensitivity to θ 13 Survival Probability: 1 0.8 Survival Probability Dependent on θ 13 : 0.6 Mostly Dependent on θ 12 : 0.4 0.2 ν Data - BG - Geo 3- ν best-fit osci. e no-oscillation ν 2- best-fit osci. 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 2 2 2 ≡ 〈 θ ∆ 〉 θ sin 2 sin (1.27 m L/E ) /sin 2 x 21M 12M ν 12 e 2011-05-01 28

  29. 5th KamLAND Reactor Neutrino Result? • Slightly increased exposure compared to the 4th result. • Full volume calibration campaign is scheduled for June 2011 which will reduce the fiducial volume uncertainties for the post-purification period. • Consider the implications of the updated reactor neutrino spectrum predictions. 2011-05-01 29

  30. Future of Long Baseline Reactor Neutrino Experiments 2011-05-01 30

  31. KamLAND-Zen 136 Xe 400 kg: 2.7 wt% dissolved into LS easy handling/ enrichment (90%) longer 2 ν beta decay life time T 2 ν >10 22 years (cf: ~10 19-20 ) KamLAND exists: ultra pure environment (U/Th~10 -17 g/g) LS techniques Balloon experience LS Density control techniques Reactor/Geo neutrino 136 Xe 400 kg loaded LS Slide courtesy of Dr. K Nakamura, in mini-balloon, R=1.7m RCNS Tohoku University, Jp Neutrino 2010 31 2011-05-01 31

  32. Neutrinoless Double Beta Decay Search 2011-05-01 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend