measurement of r d and r d with a semileptonic tag at
play

Measurement of R(D) and R(D*) with a semileptonic tag at Belle - PowerPoint PPT Presentation

Measurement of R(D) and R(D*) with a semileptonic tag at Belle Giacomo Caria on behalf of the Belle collaboration 54th Rencontres de Moriond, EW 22/03/2019 The R(D) and R(D*) puzzles R(D*) BaBar, PRL109,101802(2012) 0.5 2 = 1.0


  1. Measurement of R(D) and R(D*) with a semileptonic tag at Belle Giacomo Caria on behalf of the Belle collaboration 54th Rencontres de Moriond, EW 22/03/2019

  2. The R(D) and R(D*) puzzles R(D*) BaBar, PRL109,101802(2012) 0.5 ∆ χ 2 = 1.0 contours Belle, PRD92,072014(2015) LHCb, PRL115,111803(2015) B ( ¯ B ! D + ⌧ � ¯ Average of SM predictions ⌫ ⌧ ) Belle, PRD94,072007(2016) 0.45 ± R ( D ) ⌘ R(D) = 0.299 0.003 Belle, PRL118,211801(2017) ± B ( ¯ LHCb, PRL120,171802(2018) R(D*) = 0.258 0.005 B ! D + ` � ¯ ⌫ ` ) Average 0.4 σ 0.35 4 R ( D ⇤ ) ⌘ B ( ¯ B ! D ⇤ + ⌧ � ¯ ⌫ ⌧ ) σ 2 0.3 B ( ¯ B ! D ⇤ + ` � ¯ ⌫ ` ) 0.25 HFLAV 3.8 σ discrepancy Summer 2018 0.2 χ 2 P( ) = 74% where ℓ = e, μ 0.2 0.3 0.4 0.5 0.6 R(D) Experiment Tag method τ mode R(D) R(D*) Babar ‘12 Hadronic ℓ ν ν 0.440 ± 0.058 ± 0.042 0.332 ± 0.024 ± 0.018 Belle ‘15 Hadronic ℓ ν ν 0.375 ± 0.064 ± 0.026 0.293 ± 0.038 ± 0.015 LHCb ‘15 - ℓ ν ν - 0.336 ± 0.027 ± 0.030 Belle ‘16 Semileptonic ℓ ν ν - 0.302 ± 0.030 ± 0.011 Belle ‘17 Hadronic π ν , ρ ν - 0.270 ± 0.035 ± 0.027 LHCb ‘18 - π π π - 0.291 ± 0.019 ± 0.029 Average - - 0.407 ± 0.039 ± 0.024 0.306 ± 0.013 ± 0.007 SM 0.299 ± 0.003 0.258 ± 0.005 2 22/03/2019 Giacomo Caria University of Melbourne

  3. This measurement B-signal e¯ B-tag B 0/± ⟶ D ( * ) τ ¯ ν – B 0/± ⟶ D ( * ) ℓ ¯ ν Y(4S) ⟶ ℓ ¯ ν ν signal mode use BDT hierarchical algorithm e ⁺ B 0/± ⟶ D ( * ) ℓ ¯ ν normalization mode y ( signal vs normalization classifier) • Measure R(D) and R(D*) and their B ⟶ D ( * ) τ ν statistical and systematic correlations simultaneously background events • Three main components can be identified B ⟶ D ( * ) ℓ ν for the reconstructed events. We use a 2D fit as signal extraction method x (energy left in the calorimeter) 3 22/03/2019 Giacomo Caria University of Melbourne

  4. Preliminary fit results, D* ℓ samples 3 × → τ ν 10 B D* 200 Events / (0.12 GeV) Events / (0.12 GeV) 5 D* + l - → τ ν B D* signal region → ν B D* l 150 → ν B D* l 4 → ν → ν B D** l B D** l 3 100 Other 2 Other Fake D* 50 1 Fake D* 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 Data E (GeV) E (GeV) ECL ECL × 3 10 Events / (0.12 GeV) Events / (0.12 GeV) 4 → τ ν D* 0 l - signal region B D* calibrated with 150 → ν B D* l M(D*) - M(D) sidebands 3 → ν B D** l 100 2 Component types: Other Fake D* 50 floating 1 correlated 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 fixed E (GeV) E (GeV) ECL ECL 4 22/03/2019 Giacomo Caria University of Melbourne

  5. Preliminary fit results, D ℓ samples × 3 10 → τ ν → ν B D B D l Events / (0.12 GeV) Events / (0.12 GeV) 600 D + l - signal region 5 → τ ν → ν B D B D l → ν B D** l Other 4 → ν B D** l Other 400 3 0 → ν 0 → τ ν B D* l B D* + → ν 0 → ν B D* l B D* l 2 200 Fake D 1 + → τ ν 0 → τ ν B D* B D* 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 E (GeV) E (GeV) ECL ECL Data Fake D 3 3 × × 10 10 Events / (0.12 GeV) Events / (0.12 GeV) D 0 l - → τ ν → ν signal region B D B D l 2.5 20 calibrated using → ν B D** l Other 2 M(D) sidebands 15 + → ν 0 → ν B D* l B D* l 1.5 + → τ ν 0 → τ ν B D* B D* Component types: 10 1 Fake D 5 floating 0.5 correlated 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2 fixed E (GeV) E (GeV) ECL ECL 5 22/03/2019 Giacomo Caria University of Melbourne

  6. Preliminary systematic uncertainties Source ∆ R ( D ) (%) ∆ R ( D ∗ ) (%) D ∗∗ Composition 0.62 1.26 Fake D ( ∗ ) Calibration 0.18 0.10 PDF ∆ R ( D ) (%) ∆ R ( D ∗ ) (%) B tag Calibration 0.06 0.04 Signal 1.98 1.16 Feed-down Factors 1.52 0.37 Normalization 0.96 0.63 E ffi ciency Factors 1.73 3.60 B → D ∗∗ ` − ¯ ¯ 0.79 0.59 ⌫ ` Lepton E ffi ciency and Fake Rate 0.33 0.28 Other 0.93 0.65 Slow ⇡ E ffi ciency 0.07 0.07 Fake D ( ∗ ) -mesons PDFs Statistics 3.94 1.92 1.83 0.82 B Decay Form Factors 0.50 0.24 Mixed Feed-down, ` 1.64 0.29 Luminosity 0.09 0.04 Charged Feed-down, ` 1.45 0.56 B ( B → D ( ∗ ) `⌫ ) 0.05 0.02 Mixed Feed-down, ⌧ 0.68 0.20 B ( D ) 0.31 0.12 Charged Feed-down, ⌧ 0.78 0.28 B ( D ∗ ) 0.04 0.02 Sum 3.94 1.92 B ( ⌧ − → ` − ¯ ⌫ ` ⌫ ⌧ ) 0.13 0.12 Sum 4.66 4.32 • Results are still statistically dominated 6 22/03/2019 Giacomo Caria University of Melbourne

  7. Conclusion / Preliminary R(D ( * ) ) averages R(D*) • Most precise measurement of 0.42 τ → ν ν Belle 2019 SL B , l (Preliminary) R(D) and R(D*) to date 0.4 Tag 0.38 SM prediction • First R(D) measurement 0.36 performed with a semileptonic 0.34 tag 0.32 0.3 0.28 0.26 SM prediction 0.24 R ( D ) SM = 0 . 299 ± 0 . 003 R ( D ∗ ) SM = 0 . 258 ± 0 . 005 . 0.22 0.2 0.25 0.3 0.35 0.4 0.45 0.5 R(D) This result R ( D ) = 0 . 307 ± 0 . 037 ± 0 . 016 R ( D ∗ ) = 0 . 283 ± 0 . 018 ± 0 . 014 , 7 22/03/2019 Giacomo Caria University of Melbourne

  8. Conclusion / Preliminary R(D ( * ) ) averages R(D*) • Most precise measurement of 0.42 τ → ν ν Belle 2019 SL B , l (Preliminary) R(D) and R(D*) to date 0.4 Tag 0.38 SM prediction • First R(D) measurement 0.36 performed with a semileptonic 0.34 tag 0.32 0.3 • Results compatible with SM 0.28 expectation within 1.2 σ 0.26 SM prediction SM prediction 0.24 R ( D ) SM = 0 . 299 ± 0 . 003 R ( D ) SM = 0 . 299 ± 0 . 003 R ( D ∗ ) SM = 0 . 258 ± 0 . 005 . R ( D ∗ ) SM = 0 . 258 ± 0 . 005 . 0.22 0.2 0.25 0.3 0.35 0.4 0.45 0.5 R(D) This result R ( D ) = 0 . 307 ± 0 . 037 ± 0 . 016 R ( D ∗ ) = 0 . 283 ± 0 . 018 ± 0 . 014 , 8 22/03/2019 Giacomo Caria University of Melbourne

  9. Conclusion / Preliminary R(D ( * ) ) averages R(D*) 0.42 • Most precise measurement of Babar LHCb Combination τ → ν ν Belle 2019 SL B , l (Preliminary) R(D) and R(D*) to date Tag Belle Combination 2019 (Preliminary) World Combination 2019 0.38 SM prediction • First R(D) measurement performed with a semileptonic 0.34 tag 0.3 • Results compatible with SM expectation within 1.2 σ 0.26 SM prediction R ( D ) SM = 0 . 299 ± 0 . 003 • R(D) - R(D*) Belle average is σ R ( D ∗ ) SM = 0 . 258 ± 0 . 005 . n contours 0.22 now within 2 σ of the SM 0.2 0.25 0.3 0.35 0.4 0.45 0.5 prediction R(D) This result • R(D) - R(D*) exp. world average R ( D ) = 0 . 307 ± 0 . 037 ± 0 . 016 tension with SM expectation decreases from 3.8 σ to 3.1 σ R ( D ∗ ) = 0 . 283 ± 0 . 018 ± 0 . 014 , 9 22/03/2019 Giacomo Caria University of Melbourne

  10. Thanks for your attention !

  11. Back-up slides

  12. Comparison to previous Belle semileptonic R(D*) result Phys. Rev. D94, This analysis 072007 (2016) Observables R(D*) R(D), R(D*) B ᵒ B ᵒ , B ⁺ B signal flavours D*¯ ℓ ⁺ ν B tag channels D¯ ℓ ⁺ ν , D*¯ ℓ ⁺ ν , Tag reconstruction Same as normalization Fast BDT method cos θ B - D(*) ℓ , cos θ B - D(*) ℓ Tag selection Fast BDT output \ 12 22/03/2019 Giacomo Caria University of Melbourne

  13. Tagging in Belle • e+e- ⟶ Y(4S) ⟶ BB̄ : very clean and Signal well-known initial state ℓ K¯ D π ⁺ • Reconstruct one of the B mesons in ν̄ ℓ τ the Y(4S) event ( B tag ) to gather information about the B decay of ν̄ τ ν̄ τ B ̄ interest • Hadronic B decays: e ⁺ e¯ Y(4S) PRO: full B reconstruction, high purity CON: low efficiency ~5000 channels Tag μ ⁺ B π ¯ J/ ψ • Semileptonic B decays: PRO: high efficiency K ⁺ μ ¯ CON: one missing neutrino, low purity ~100 channels 13 22/03/2019 Giacomo Caria University of Melbourne

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend