maximum principles for optimal control of fbsde with jumps
play

Maximum principles for optimal control of FBSDE with jumps Agn` es - PowerPoint PPT Presentation

Maximum principles for optimal control of FBSDE with jumps Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 joint work with Bernt ksendal (Oslo University) Agn` es Sulem INRIA-Paris-Rocquencourt


  1. Maximum principles for optimal control of FBSDE with jumps Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 joint work with Bernt Øksendal (Oslo University) Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  2. Outline Motivation: risk minimizing portfolio problem Maximum principles for optimal control of FBSDE driven by L´ evy processes a sufficient maximum principle an equivalence principle a Malliavin calculus approach Application to risk minimizing portfolios Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  3. Financial market set up Filtered probability space (Ω , F , {F t } t ≥ 0 , P ). • A risk free asset , with unit price S 0 ( t ) = 1 for all t ∈ [0 , T ] • A risky asset , with unit price S ( t ) � γ ( t , z )˜ dS ( t ) = S ( t − )[ µ ( t ) dt + σ ( t ) dB ( t ) + N ( dt , dz )]; S (0) > 0 R 0 • B ( t ): F t -Brownian motion • ˜ N ( dt , dz ) = N ( dt , dz ) − ν ( dz ) dt : compensation of the jump measure N ( · , · ) of a L´ evy process η ( · ), ν being the L´ evy measure of η ( · ). • R 0 = R \ { 0 } • µ ( t ) , σ ( t ) and γ ( t , z ): F t -predictable processes s.t. γ ( t , z ) ≥ − 1 + ǫ and � T � � � | µ ( t ) | + σ 2 ( t ) + γ 2 ( t , z ) ν ( dz ) dt < ∞ a.s. 0 R 0 Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  4. Risk minimizing portfolio problem The wealth process A u corresponding to a portfolio u is given by � R 0 γ ( t , z )˜ dA ( t ) = A ( t − ) u ( t ) � � � µ ( t ) dt + σ ( t ) dB ( t ) + N ( dt , dz ) A (0) = a > 0 . (1) Pb: find u ∗ ∈ A E which minimizes the risk of the terminal wealth, i.e. u ∈A E ρ ( A u ( T )) = ρ ( A u ∗ ( T )) inf where ρ is a convex risk measure , i.e. a map satisfying convexity, monotonicity and translation properties. Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  5. A representation of convex risk measures A convex risk measure ρ can be represented as: ρ ( F ) = sup { E Q [ − F ] − ζ ( Q ) } (2) Q ∈P for some family P of probability measures absolutely continuous wrt P and some convex “penalty” function ζ : P → R . For example, the entropic risk measure is defined by: ρ ( F ) := sup { E Q [ − F ] − H ( Q , P ) } Q ≪ P where H is the relative entropy � dQ � dQ �� H ( Q , P ) = E dP ln dP With the representation (2), the problem of minimizing the risk of the terminal wealth leads to a stochastic differential game . (Mataramvura-Øksendal) Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  6. Representation of risk measures by BSDE Definition: Define the risk ρ g ( F ) (associated to a convex function g ) of a financial position F as ρ g ( F ) := E g [ − F ] := X − F (0) ∈ R (3) g where X − F (0) is the value at t = 0 of the solution X ( t ) of the BSDE: g � R 0 K ( t , z )˜ dX ( t ) = − g ( X ( t )) dt + Y ( t ) dB ( t ) + � N ( dt , dz ) X ( T ) = − F . When g ( x ) = 1 2 x 2 , then ρ g coincides with the entropic risk Remark: measure . Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  7. Now, the risk minimizing portfolio problem u ∈A ρ g ( A u ( T )) inf is equivalent to u ∈A X − A u ( T ) inf (0) (4) g where X − A u ( T ) ( t ) is given by the BSDE g � R 0 K ( t , z )˜ � dX ( t ) = − g ( X ( t )) dt + Y ( t ) dB ( t ) + N ( dt , dz ) X ( T ) = − A u ( T ) . and A ( t ) is given by a SDE. This is an example of a stochastic control problem of a system of evy processes . FBSDEs driven by L´ Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  8. Optimal Control with partial observation of FBSDEs Forward system in the unknown process A ( t )  dA ( t ) = b ( t , A ( t ) , u ( t )) dt + σ ( t , A ( t ) , u ( t )) dB ( t )   R γ ( t , A ( t ) , u ( t ) , z )˜ � (5) + N ( dt , dz ); t ∈ [0 , T ]  A (0) = a ∈ R  Backward system in the unknown processes X ( t ) , Y ( t ) , K ( t , z )  dX ( t ) = − g ( t , A ( t ) , X ( t ) , Y ( t ) , u ( t )) dt + Y ( t ) dB ( t )   R K ( t , z )˜ � (6) + N ( dt , dz ); t ∈ [0 , T ]  X ( T ) = cA ( T ) , c ∈ R \ { 0 }  Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  9. Admissible controls Consider a subfiltration E t ⊆ F t representing the information available to the controller at time t , e.g. E t = F ( t − δ ) + ( δ > 0 constant) i.e. the controller gets a delayed information flow • Let A E denote the family of admissible controls, contained in the set of E t -predictable controls u ( · ) such that the system (5)–(6) has a unique strong solution. • U : given convex set s.t. u ( t ) ∈ U , ∀ t ∈ [0 , T ] Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  10. Optimal control problem Performance functional: � � T J ( u ) = E f ( t , A ( t ) , X ( t ) , Y ( t ) , K ( t , · ) , u ( t )) dt (7) 0 � + h 1 ( X (0)) + h 2 ( A ( T )) ; u ∈ A E where f , h 1 , h 2 are given functions s.t. � � T � E | f ( t , A ( t ) , X ( t ) , Y ( t ) , K ( t , · ) , u ( t )) | dt + | h 1 ( X (0)) | + | h 2 ( A ( T )) | < ∞ . 0 Find Φ E ∈ R and u ∗ ∈ A E such that J ( u ) = J ( u ∗ ) Φ E = sup (8) u ∈A E Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  11. Hamiltonian The Hamiltonian is defined by H ( t , a , x , y , k , u , λ, p , q , r ) (9) = f ( t , a , x , y , k , u ) + g ( t , a , x , y , u ) λ + b ( t , a , u ) p � + σ ( t , a , u ) q + γ ( t , a , u , z ) r ( z ) ν ( dz ) R 0 We assume that H is Frechet differentiable ( C 1 ) in the variables a , x , y , k . Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  12. Pair of FBSDEs in the adjoint processes Forward system in the unknown process λ ( t ) ∂ H  d λ ( t ) = ∂ x ( t , A ( t ) , X ( t ) , Y ( t ) , K ( t , · ) , u ( t ) , λ ( t ) , p ( t ) , q ( t ) , r ( t , · )) dt     + ∂ H �  ∇ k H ()˜ ∂ y () dB ( t ) + N ( dt , dz ) R 0   (= dh 1  h ′  λ (0) = 1 ( X (0)) dx ( X (0)))  (10) Backward system in the unknown processes p ( t ) , q ( t ) , r ( t , · ) − ∂ H �  r ( t , z )˜ dp ( t ) = ∂ a () dt + q ( t ) dB ( t ) + N ( dt , dz ); t ∈ [0 , T ]  R c λ ( T ) + h ′ p ( T ) = 2 ( A ( T ))  (11) Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  13. Sufficient conditional maximum principle Theorem 1: Let ˆ u ∈ A E with corresponding solutions A , ˆ ˆ X , ˆ Y , ˆ K , ˆ λ, ˆ p , ˆ q , ˆ r . Suppose that • The functions x → h i ( x ), i = 1 , 2 and ( a , x , y , k , u ) → H ( t , a , x , y , k , u , ˆ λ ( t ) , ˆ p ( t ) , ˆ q ( t ) , ˆ r ( t , · )) are concave , for all t ∈ [0 , T ] • ˆ u ( t ) ∈ argmax v ∈ U E [ H ( t , ˆ A ( t ) , ˆ X ( t ) , ˆ Y ( t ) , ˆ K ( t , · ) , v , ˆ λ ( t ) , ˆ p ( t ) , ˆ q ( t ) , ˆ r ( t , · )) | E t ] Then (under some growth conditions) ˆ u ( t ) is an optimal control i.e. J (ˆ u ) = sup J ( u ) . u ∈A E Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

  14. Proof Choose u ∈ A with corresponding solutions A , X , Y , K , λ, p , q , r . We write H ( t ) = H ( t , ˆ ˆ A ( t ) , ˆ X ( t ) , ˆ u ( t ) , ˆ K ( t , · ) , ˆ λ ( t ) , ˆ p ( t ) , ˆ q ( t ) , ˆ r ( t , · )) H ( t ) = H ( t , A ( t ) , X ( t ) , Y ( t ) , K ( t , · ) , u ( t ) , ˆ λ ( t ) , ˆ p ( t ) , ˆ q ( t ) , ˆ r ( t )( t , · )) and similarly with ˆ f ( t ) , f ( t ) , . . . etc. Agn` es Sulem INRIA-Paris-Rocquencourt agnes.sulem@inria.fr RICAM Linz, October 20th 2008 Maximum principles for optimal control of FBSDE with jumps

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend