matrix calculations inverse and basis transformation
play

Matrix Calculations: Inverse and Basis Transformation A. Kissinger - PowerPoint PPT Presentation

Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Matrix Calculations: Inverse and Basis Transformation A. Kissinger (and H. Geuvers) Institute for Computing and Information Sciences


  1. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Matrix Calculations: Inverse and Basis Transformation A. Kissinger (and H. Geuvers) Institute for Computing and Information Sciences – Intelligent Systems Radboud University Nijmegen Version: spring 2015 A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 1 / 42

  2. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Outline Existence and uniqueness of inverse Determinants Basis transformations A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 2 / 42

  3. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Recall: Inverse matrix Definition Let A be a n × n (“square”) matrix. This A has an inverse if there is an n × n matrix A − 1 with: A · A − 1 = I A − 1 · A = I and Note Matrix multiplication is not commutative, so it could ( a priori ) be the case that: • A has a right inverse: a B such that A · B = I and • A has a (different) left inverse: a C such that C · A = I . However, this doesn’t happen. A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 4 / 42

  4. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Uniqueness of the inverse Theorem If a matrix A has a left inverse and a right inverse, then they are equal. If A · B = I and C · A = I , then B = C . Proof. Multiply both sides of the first equation by C : C · A · B = C · I = ⇒ B = C � Corollary If a matrix A has an inverse, it is unique. A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 5 / 42

  5. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations When does a matrix have an inverse? Theorem (Existence of inverses) An n × n matrix has an inverse (or: is invertible) if and only if it has n pivots in its echelon form. Soon, we will introduce another criterion for a matrix to be invertible, using determinants. A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 6 / 42

  6. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Explicitly computing the inverse, part I � � a b • Suppose we wish to find A − 1 for A = c d • We need to find x , y , u , v with: � a b � � x y � � 1 0 � · = c d u v 0 1 • Multiplying the matrices on the LHS: � � � � ax + bu cx + du 1 0 = ay + bv cy + dv 0 1 • ...gives a system of 4 equations:  ax + bu = 1    cx + du = 0 ay + bv = 0    cy + dv = 1 A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 7 / 42

  7. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Computing the inverse: the 2 × 2 case, part II • Splitting this into two systems: � ax + bu = 1 � ay + bv = 0 and cx + du = 0 cy + dv = 1 • Solving the first system for ( u , x ) and the second system for ( v , y ) gives: − c d a − b u = x = and v = y = ad − bc ad − bc ad − bc ad − bc (assuming bc − ad � = 0). Then: � x y � � � d − b A − 1 = ad − bc ad − bc = − c a u v ad − bc ad − bc � � � d ☛ ✟ − b learn this for- • Conclusion: A − 1 = 1 ad − bc − c a mula by heart ✡ ✠ A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 8 / 42

  8. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Computing the inverse: the 2 × 2 case, part III Summarizing: Theorem (Existence of an inverse of a 2 × 2 matrix) A 2 × 2 matrix � a b � A = c d has an inverse (or: is invertible) if and only if ad − bc � = 0 , in which case its inverse is � d � 1 − b A − 1 = − c a ad − bc A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 9 / 42

  9. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Applying the general formula to the swingers � � 0 . 8 0 . 1 , so a = 8 10 , b = 1 10 , c = 2 10 , d = 9 • Recall P = 10 0 . 2 0 . 9 • ad − bc = 72 100 = 70 2 100 = 7 100 − 10 � = 0 so the inverse exists! � d • Thus: � − b P − 1 = 1 ad − bc − c a � � 0 . 9 − 0 . 1 10 = 7 − 0 . 2 0 . 8 • Then indeed: � 0 . 9 � � 0 . 8 0 . 1 � � 0 . 7 � � 1 0 � − 0 . 1 0 10 = 10 · = 7 − 0 . 2 0 . 8 0 . 2 0 . 9 7 0 0 . 7 0 1 A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 10 / 42

  10. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Determinants What a determinant does For a square matrix A , the deteminant det( A ) is a number (in R ) It satisfies: det( A ) = 0 ⇐ ⇒ A is not invertible ⇒ A − 1 does not exist ⇐ ⇐ ⇒ A has < n pivots in its echolon form Determinants have useful properties, but calculating determinants involves some work. A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 12 / 42

  11. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Determinant of a 2 × 2 matrix � a b � • Assume A = c d • Recall that the inverse A − 1 exists if and only if ad − bc � = 0, and in that case is: � d � − b A − 1 = 1 ad − bc − c a • In this 2 × 2-case we define: � � � a b � a b � � det = � = ad − bc � � c d c d � ⇒ A − 1 does not exist. • Thus, indeed: det( A ) = 0 ⇐ A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 13 / 42

  12. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Determinant of a 2 × 2 matrix: example • Recall the political transisition matrix � 0 . 8 0 . 1 � � 8 1 � = 1 P = 10 0 . 2 0 . 9 2 9 • Then: 10 · 9 8 10 − 1 10 · 2 det( P ) = 10 72 2 = 100 − 100 70 7 = 100 = 10 • We have already seen that P − 1 exists, so the determinant must be non-zero. A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 14 / 42

  13. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Determinant of a 3 × 3 matrix   a 11 a 12 a 13 • Assume A = a 21 a 22 a 23   a 31 a 32 a 33 • Then one defines: � � a 11 a 12 a 13 � � � � det A = a 21 a 22 a 23 � � � � a 31 a 32 a 33 � � � � � � � � a 22 a 23 a 12 a 13 a 12 a 13 � � � � � � = + a 11 · � − a 21 · � + a 31 · � � � � � � a 32 a 33 a 32 a 33 a 22 a 23 � � � � • Methodology: • take entries a i 1 from first column, with alternating signs (+, -) • take determinant from square submatrix obtained by deleting the first column and the i -th row A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 15 / 42

  14. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Determinant of a 3 × 3 matrix, example � � 1 2 − 1 � � � � � � � � 3 4 2 − 1 2 − 1 � � � � � � � � 5 3 4 = 1 � − 5 � + − 2 � � � � � � � � 0 1 0 1 3 4 � � � � � � − 2 0 1 � � � � � � � � = 3 − 0 − 5 2 − 0 − 2 8 + 3 = 3 − 10 − 22 = − 29 A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 16 / 42

  15. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations The general, n × n case � � a 12 · · · a 1 n � � � � � � a 11 · · · a 1 n a 22 · · · a 2 n � � � � � � a 32 · · · a 3 n � � � � � � . . . . � . . � � . . � � � = + a 11 · − a 21 · . . . . . . � � � � � . . � . . � � � � � � a n 1 . . . a nn a n 2 . . . a nn � � � � � � a n 2 . . . a nn � � � � � � a 12 · · · a 1 n � � · · · � � � � . . � � � . . � + a 31 · · · · · · ± a n 1 � � . . � � � � � � · · · � � a ( n − 1)2 . . . a ( n − 1) n � � (where the last sign ± is + if n is odd and - if n is even) Then, each of the smaller determinants is computed recursively. (A lot of work! But there are smarter ways...) A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 17 / 42

  16. Existence and uniqueness of inverse Determinants Radboud University Nijmegen Basis transformations Some properties of determinants Theorem For A and B two n × n matrices, det( A · B ) = det( A ) · det( B ) . The following are corollaries of the Theorem: • det( A · B ) = det( B · A ). • If A has an inverse, then det( A − 1 ) = 1 det( A ) . • det( A k ) = (det( A )) k , for any k ∈ N . Proofs of the first two: • det( A · B ) = det( A ) · det( B ) = det( B ) · det( A ) = det( B · A ). (Note that det( A ) and det( B ) are simply numbers). • If A has an inverse A − 1 then det( A ) · det( A − 1 ) = det( A · A − 1 ) = det( I ) = 1, so det( A − 1 ) = 1 det( A ) . A. Kissinger (and H. Geuvers) Version: spring 2015 Matrix Calculations 18 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend