correcting errors in a matrix inverse
play

Correcting errors in a matrix inverse (or product) Daniel S. Roche - PowerPoint PPT Presentation

Introduction Matrix Multiplication Matrix Inverse Perspective Correcting errors in a matrix inverse (or product) Daniel S. Roche Computer Science Department United States Naval Academy Annapolis, Maryland, U.S.A. Laboratoire Jean Kuntzmann


  1. Introduction Matrix Multiplication Matrix Inverse Perspective Correcting errors in a matrix inverse (or product) Daniel S. Roche Computer Science Department United States Naval Academy Annapolis, Maryland, U.S.A. Laboratoire Jean Kuntzmann Universit´ e Grenoble Alpes Grenoble, France 24 January 2018 Journ´ ees Nationales de Calcul Formel Luminy, France Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 1 / 23

  2. Introduction Matrix Multiplication Matrix Inverse Perspective Correcting Errors General Framework Some problem is slow to solve locally. So we outsource the computation and get back the result. If the result is wrong, we should detect that. If the result is “close”, we should correct it. Sources of error Noisy communication channel Faults in computation Malicious servers? Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 2 / 23

  3. Introduction Matrix Multiplication Matrix Inverse Perspective Example: Sudoku Response Sent to server 7 8 2 9 7 6 8 1 2 4 5 3 7 2 5 3 9 6 4 8 1 7 1 4 8 3 5 1 4 5 3 8 7 9 2 6 5 8 3 7 9 8 6 2 5 3 4 1 6 9 4 6 1 5 7 3 2 8 9 3 7 3 8 2 1 4 9 7 6 5 5 1 7 5 3 9 2 9 6 1 7 4 4 9 6 2 4 7 9 1 5 3 8 7 4 2 8 1 7 4 3 8 6 9 2 Source: https://www.nytimes.com/crosswords/game/sudoku/hard Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 3 / 23

  4. Introduction Matrix Multiplication Matrix Inverse Perspective Example: Sudoku Response Sent to server 7 8 2 9 7 6 8 1 2 4 5 3 7 2 5 3 9 6 4 8 1 7 1 4 8 3 5 1 4 5 3 8 7 9 2 6 5 8 3 7 9 8 6 2 5 3 4 1 6 9 4 6 1 5 7 3 2 8 9 3 7 3 8 2 1 4 9 7 6 5 5 1 7 5 3 9 2 9 6 1 7 4 4 9 6 2 4 7 9 1 5 3 8 7 4 2 8 1 7 4 3 8 6 9 2 Source: https://www.nytimes.com/crosswords/game/sudoku/hard Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 3 / 23

  5. Introduction Matrix Multiplication Matrix Inverse Perspective First Problem: Matrix Multiplication Matrix Multiplication with Errors Input : A , B , C ∈ F n × n , where C ≈ AB Output : E ∈ F n × n s.t. AB = C − E Parameters : Dimension n Input size t = # A + # B + # C Error count k = # E Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 4 / 23

  6. Introduction Matrix Multiplication Matrix Inverse Perspective First Problem: Matrix Multiplication Matrix Multiplication with Errors Input : A , B , C ∈ F n × n , where C ≈ AB Output : E ∈ F n × n s.t. AB = C − E Parameters : Dimension n Input size t = # A + # B + # C Error count k = # E ıve recomputation: O ( n ω ) Na¨ Gasieniec, Levcopoulos, Lingas, Pagh, Tokuyama, Algorithmica 2017: � � � n 2 + kn O Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 4 / 23

  7. Introduction Matrix Multiplication Matrix Inverse Perspective First Problem: Matrix Multiplication Matrix Multiplication with Errors Input : A , B , C ∈ F n × n , where C ≈ AB Output : E ∈ F n × n s.t. AB = C − E Parameters : Dimension n Input size t = # A + # B + # C Error count k = # E ıve recomputation: O ( n ω ) Na¨ Gasieniec, Levcopoulos, Lingas, Pagh, Tokuyama, Algorithmica 2017: � � � n 2 + kn O � � � � t + k 0 . 686 n Ours: O ( t + kn ) worst-case; best case O Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 4 / 23

  8. Introduction Matrix Multiplication Matrix Inverse Perspective Related Work Monte Carlo verification in Linear Algebra Matrix multiplication: Freivalds ’79 Positive semidefiniteness: Kaltofen, Nehring, Saunders ’11 Rank, characteristic polynomial,. . . : Dumas & Kaltofen ’14 Rank profile, triangular forms: Dumas, Lucas, Pernet ’17 Error correction in symbolic computation Complexity of sparse matrix multiplication Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 5 / 23

  9. Introduction Matrix Multiplication Matrix Inverse Perspective Related Work Monte Carlo verification in Linear Algebra Error correction in symbolic computation Chinese remaindering: Goldreich, Ron, Sudan ’99 Rational reconstruction: Khonji, Pernet, Roch, Roche, Stalinski ’10 Sparse interpolation: Comer, Kaltofen, Pernet ’12 Complexity of sparse matrix multiplication Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 5 / 23

  10. Introduction Matrix Multiplication Matrix Inverse Perspective Related Work Monte Carlo verification in Linear Algebra Error correction in symbolic computation Complexity of sparse matrix multiplication k = number of nonzeros � n 2 + k 0 . 7 n 1 . 2 � � : Yuster & Zwick ’04 O � k 1 . 34 � � O output sensitive: Amossen & Pagh ’09 � k 0 . 188 n 2 � � O : Lingas ’10 � � � n 2 + kn O output sensitive: Pagh ’13 Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 5 / 23

  11. Introduction Matrix Multiplication Matrix Inverse Perspective Outline Introduction Matrix Multiplication with Errors Crucial tools: Nonzero row identification, Sparse interpolation Matrix Inverse with Errors Additional tools: Commutativity, Sparse low-rank linear algebra Open Problems Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 6 / 23

  12. Introduction Matrix Multiplication Matrix Inverse Perspective Correcting errors in matrix multiplication Input : A , B , C ∈ F n × n Output : E ∈ F n × n s.t. AB = C − E Algorithm overview : 1 Formulate as E = C − AB 2 Find nonzero rows Choose random v ∈ F n and compute Ev 3 Evaluate row polynomials For each evaluation θ , compute E [1 , θ, . . . , θ n − 1 ] T 4 Interpolate row polynomials Sparse interpolation to recover at least half of the nonero rows 5 Repeat O (log k ) times until all rows are found Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 7 / 23

  13. Introduction Matrix Multiplication Matrix Inverse Perspective Finding nonzero rows For unknown M ∈ F n × n , which rows are nonzero? Example ? M Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 8 / 23

  14. Introduction Matrix Multiplication Matrix Inverse Perspective Finding nonzero rows For unknown M ∈ F n × n , which rows are nonzero? Example ? v M 1 Choose random vector v ∈ F n Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 8 / 23

  15. Introduction Matrix Multiplication Matrix Inverse Perspective Finding nonzero rows For unknown M ∈ F n × n , which rows are nonzero? Example ? = v x M 1 Choose random vector v ∈ F n 2 Apply Mv = x Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 8 / 23

  16. Introduction Matrix Multiplication Matrix Inverse Perspective Finding nonzero rows For unknown M ∈ F n × n , which rows are nonzero? Example ? ? ? = ? ? ? ? ? ? v x M 1 Choose random vector v ∈ F n 2 Apply Mv = x 3 Nonzero rows of M are nonzero entries in x w.h.p. Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 8 / 23

  17. Introduction Matrix Multiplication Matrix Inverse Perspective Row Polynomials Treat each row of M ∈ F n × n as a degree- ( n − 1) polynomial Example � x 5 + � x 7 f 1 ( x ) 1 x f 2 ( x ) 0 x 2 � x 9 f 3 ( x ) x 3 . . . . = = . . . . . Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 9 / 23

  18. Introduction Matrix Multiplication Matrix Inverse Perspective Row Polynomial Evaluation Need to evaluate each row polynomial f i ( x ) at 1 , θ, θ 2 , . . . This is equivalent to multiplying by a (truncated) DFT matrix. Example f 1 ( θ 2 ) f 1 (1) f 1 ( θ ) · · · f 2 ( θ 2 ) f 2 (1) f 2 ( θ ) · · · . . . . . . . . . . . . θ i + j = M V MV n × n n × s n × s Important : Takes � O ( sn + t ) field ops, where t = # M Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 10 / 23

  19. Introduction Matrix Multiplication Matrix Inverse Perspective Oligonomial Polynomial Interpolation Algorithm (Kaltofen, Lakshman, Wiley 1990) Unknown polynomial f ∈ F [ x ] with t nonzero terms is uniquely determined by f (1) , f ( θ ) , f ( θ 2 ) , . . . , f ( θ 2 s − 1 ) iff: f has at most s nonzero terms; and order( θ ) ≥ deg f Problem over GF(q) : Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 11 / 23

  20. Introduction Matrix Multiplication Matrix Inverse Perspective Oligonomial Polynomial Interpolation Algorithm (Kaltofen, Lakshman, Wiley 1990) Unknown polynomial f ∈ F [ x ] with t nonzero terms is uniquely determined by f (1) , f ( θ ) , f ( θ 2 ) , . . . , f ( θ 2 s − 1 ) iff: f has at most s nonzero terms; and order( θ ) ≥ deg f Problem over GF(q) : Needs t discrete logarithms to discover the exponents Solution : Pre-compute first deg f = n powers of θ Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 11 / 23

  21. Introduction Matrix Multiplication Matrix Inverse Perspective Multiplication Algorithm Overview Given A , B , C , we want to compute E = C − AB ? = E − C A B Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 12 / 23

  22. Introduction Matrix Multiplication Matrix Inverse Perspective Multiplication Algorithm Overview 1 Find zero rows of E ? ? ? ? ? ? ? ? ? = ? ? ? v Cv − ABv E − v v C A B Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 12 / 23

  23. Introduction Matrix Multiplication Matrix Inverse Perspective Multiplication Algorithm Overview 2 Remove corresponding rows from C and A ? = E − C A B Dan Roche (USNA/LJK) Matrix Inverse with Errors 24 January 2018 12 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend