ensemble kalman inversion
play

Ensemble Kalman Inversion Derivative-Free Optimization Andrew - PowerPoint PPT Presentation

Ensemble Kalman Inversion Derivative-Free Optimization Andrew Stuart Computing and Mathematical Sciences California Institute of Technology Allen Philanthropies, Mission Control for Earth, NSF, ONR, Schmidt Futures. ISDA 2019, Kobe, Japan


  1. Ensemble Kalman Inversion Derivative-Free Optimization Andrew Stuart Computing and Mathematical Sciences California Institute of Technology Allen Philanthropies, Mission Control for Earth, NSF, ONR, Schmidt Futures. ISDA 2019, Kobe, Japan January 23rd 2019

  2. Overview What Is EKI? EKI For Complex Dynamics EKI With Constraints Conclusions and References

  3. What Is EKI? Anderson, J.L. (2001) Lorentzen, R., K. Fjelde, J. Froyen, A. Lage, G. Naevdal and E. Vefring (2001) Naevdal, G., T. Mannseth and E. Vefring (2002) Skjervheim, J. and G. Evensen (2011) Chen, Y. and D. Oliver (2002) Emerick, A. and A. Reynolds (2013) Evensen, G. (2018)

  4. Ensemble Kalman Filter (Kalman [1], Evensen [2]) State Space Model n ∈ Z + Dynamics Model: v n +1 = Ψ( v n ) + ξ n , n ∈ Z + Data Model: y n +1 = Hv n +1 + η n +1 , Noise Structure: ξ n ∼ N (0 , Σ) , η n ∼ N (0 , Γ) . Sequential Optimization Perspective v ( k ) n +1 = Ψ( v ( k ) n ) + ξ ( k ) n ∈ Z + Predict: � n , n ( v ) = 1 n +1 ) � 2 + 1 − 1 2 � Γ − 1 v ( k ) 2 ( y ( k ) J ( k ) 2 � � n +1 − Hv ) � 2 Model/Data Compromise: C n +1 ( v − � 2 v ( k ) n +1 = argmin v J ( k ) Optimize: n ( v ) . � v ( k ) C n +1 is empirical covariance of the { � n +1 } .

  5. Ensemble Kalman Inversion Standard Inverse Problem Formulation Find θ from y where G : U �→ Y , η is noise and y = G( θ ) + η, η ∼ N(0 , Γ) . State Space Estimation Formulation (Oliver et al [3], Iglesias et al [4]) n ∈ Z + Dynamics Model: θ n +1 = θ n , n ∈ Z + Dynamics Model: w n +1 = G( θ n ) , n ∈ Z + Data Model: y n +1 = w n +1 + η n +1 , Employ Ensemble Kalman Filter with y n +1 ≡ y .

  6. Ensemble Kalman Inversion Standard Inverse Problem Formulation Find θ from y where G : U �→ Y , η is noise and y = G( θ ) + η, η ∼ N(0 , Γ) . State Space Estimation Formulation v = ( θ, w ), Ψ( v ) = ( θ, G( θ )) and H = (0 , I ): n ∈ Z + Dynamics Model: v n +1 = Ψ( v n ) + ξ n , n ∈ Z + Data Model: y n +1 = Hv n +1 + η n +1 , Employ Ensemble Kalman Filter with y n +1 ≡ y .

  7. Ensemble Kalman Inversion EKI: Discrete Time + Γ) − 1 � � θ ( j ) n +1 = θ ( j ) n + C θ G n ( C GG y ( j ) − G ( θ ( j ) θ ( j ) (0) = θ ( j ) n ) , 0 . n n Let Γ �→ h − 1 Γ, θ ( j ) n ≈ θ ( j ) ( nh ) and h → 0: EKI: Continuous Time Limit � G , G ( θ ( j ) ) − y ( j ) � � J θ ( j ) = − 1 ˙ G ( θ ( k ) ) − ¯ Γ θ ( k ) , θ ( j ) (0) = θ ( j ) 0 . J k =1

  8. Electrical Impedance Tomography (EIT) 1. Chada et al [5] Forward Problem Given ( κ, I ) ∈ L ∞ ( D ; R + ) × R m find ( ν, V ) ∈ H 1 ( D ) × R m : e l −∇ · ( κ ∇ ν ) = 0 ∈ D , ∂D ν + z ℓ κ ∇ ν · n = V ℓ ∈ e ℓ , ℓ = 1 , . . . , m , ∈ ∂ D \ ∪ m ∇ ν · n = 0 ℓ =1 e ℓ , � κ ∇ ν · n ds = I ℓ ∈ e ℓ , ℓ = 1 , . . . , m . D Ohm’s Law: V = R ( κ ) × I . Inverse Problem Set κ = exp( u ) . Given a set of K noisy measurements of voltage V ( k ) from � � currents I ( k ), and G k ( u ) = R exp( u ) × I ( k ), find u from y where: η ∼ N(0 , γ 2 ) , y ( k ) = G k ( u ) + η, k = 1 , . . . , K .

  9. EIT 2 5 4.5 4 3.5 3 2.5 2 1.5 1 Figure: True Conductivity. Parameterization ◮ Continuous level set function. ◮ Lengthscale of level set function. ◮ Smoothness of level set function.

  10. EIT 3 Figure: Five succesive iterations: level set function u .

  11. EIT 4 Figure: Five succesive iterations: thresholded level set function v = S ( u ).

  12. EKI For Complex Dynamics collaboration with: Cleary, Garbuno-Inigo, Lan, Schneider (2019)

  13. Data From Dynamics Parameter-Dependent Dynamics du dt = F ( u ; θ ) , u (0) = u 0 . Time-Averaged Data � T � � y = G T ( θ ; u 0 ) = 1 ϕ u ( t ) dt . T 0 Central Limit Theorem 1 √ G T ( θ ; u 0 ) = G ( θ ) + N (0 , Σ) , T 1 y = G ( θ ) + √ N (0 , Σ) . T

  14. Example 1 – Lorenz ’63 Governing Dynamics x = 10 ( y − x ) ˙ y = r x − y − x z ˙ z = x y − b z ˙ ◮ 2-dimensional unknown: θ = [ r , b ] ⊤ ◮ G only available to us approximately via G T . ◮ η only available to us approximately via G T .

  15. Example 1 – Lorenz ’63 EKI: Continuous Time Limit � G , G ( θ ( j ) ) − y ( j ) � � J θ ( j ) = − 1 ˙ G ( θ ( k ) ) − ¯ Γ θ ( k ) , θ ( j ) (0) = θ ( j ) 0 J k =1 ◮ ϕ ( · ) is the vector of first and second order moments. ◮ The observation y is simulated from a truth θ ∗ ◮ θ ∗ = [28 , 8 / 3] ◮ Each y ( j ) i . i . d ∼ N ( y , Γ) ◮ G only available to us approximately via G T .

  16. Example 1 – Lorenz ’63 7 30 10 6 25 10 5 20 10 4 15 10 3 10 10 2 5 10 1 0 10 0 5 10 15 20 25 30

  17. Example 1 – Lorenz ’63 Objective Function 1500 1500 1250 1250 G ( )| 2 G ( )| 2 1000 1000 750 750 2 | y 2 | y 500 500 1 1 250 250 0 0 25 26 27 28 29 30 2.0 2.5 3.0 3.5 4.0 r b ◮ Marginals of the objective function Φ( u ) = 1 2 � y − G ( θ ) � 2 . ◮ In blue, noisy evaluations of the misfit Φ( θ ) ◮ In orange: the GP mean from emulation of log Φ. ◮ In shaded orange: is the GP 95% uncertainty bands. ◮ k ( θ, θ ′ ) = σ 2 exp( −|� ℓ, θ − θ ′ �| 2 ) + δ 2 .

  18. Example 1 – Lorenz ’63 Bayesian Inversion 0.120 0.021 28.1 0.105 28.1 0.018 0.090 0.015 28.0 28.0 0.075 0.012 0.060 r r 0.009 27.9 27.9 0.045 0.006 0.030 27.8 27.8 0.003 0.015 0.000 0.000 2.60 2.65 2.70 2.60 2.65 2.70 b b (a) MCMC using noisy Φ( θ ) (b) MCMC using GP Figure: MCMC-RWM Sample Density Plots MCMC-RWM: Comparisons using ∼ 5 × 10 4 samples ◮ Noisy Φ: 1% acceptance rate; not converged. ◮ GP Φ: 30% acceptance rate; converged.

  19. Example 2 – Simplified Betts-Miller Scheme (’86, ’07, ’08) Forward Model ∂ q ∂ t + v · ∇ q = − q − q ref ( T ; θ ) Moisture Conservation: τ q ( q , T ; θ ) ∂ T ∂ t + v · ∇ T = T − T ref ( q , T ; θ ) Energy Conservation: + RAD + ... τ T ( q , T ; θ ) ◮ Coupled with mass and momentum conservation equations. ◮ Model computes precipitation rates; initially P q � = P T . ◮ Adjusts reference profiles and/or timescales until P q = P T . ◮ Enthalpy constraints imposed. ◮ O (10 5 ) unknowns ◮ Employs 2 unknown parameters: ◮ θ RH : reference relative humidity ◮ θ τ : default relaxation timescale

  20. Example 2 – Betts-Miller EKI: Discrete Time + Γ) − 1 � � θ ( j ) n +1 = θ ( j ) y ( j ) − G ( θ ( j ) θ ( j ) (0) = θ ( j ) n + C θ G n ( C GG n ) , 0 . n n ◮ ϕ ( θ ) = [ � RH ( q , T ; θ ) � , � P ( q , T ; θ ) � , F ( q , T ; θ )] ⊤ ◮ RH : relative humidity ◮ P : daily precipitation rate ◮ �·� : denotes longitudinal average ◮ F : longutudinal probability of extreme precipitation (90th %ile) ◮ ϕ ( θ ) is evaluated over all latitudes at fixed altitude of 5 km ◮ ϕ ( θ ) ∈ R 96

  21. Example 2 – Betts-Miller

  22. Example 2 – Betts-Miller Objective Function 300 500 250 400 G ( )| 2 G ( )| 2 200 300 150 2 | y 2 | y 200 1 1 100 100 50 0.600 0.625 0.650 0.675 0.700 0.725 1 2 3 4 [hrs] RH Figure: GP trained from EKI data In orange, the GP mean from emulation of Φ.

  23. Example 2 – Betts-Miller MCMC 2.3 0.016 2.3 0.024 2.2 0.014 2.2 0.021 2.1 0.012 2.1 0.018 2.0 0.010 2.0 0.015 [hrs] [hrs] 1.9 0.008 1.9 0.012 1.8 0.006 1.8 0.009 1.7 0.004 1.7 0.006 1.6 0.002 1.6 0.003 1.5 0.000 1.5 0.000 0.690 0.695 0.700 0.705 0.710 0.690 0.695 0.700 0.705 0.710 RH RH (a) GP from uniform samples (b) GP from EKI Figure: MCMC Sample density plot RWM with ∼ 10 6 iterations

  24. EKI With Constraints collaboration with Albers, Blancquart, Levine, Esmaeilzadeh-Seylabi [6] Wang D, Chen Y and Cai X 2009 Janji´ c T, McLaughlin D, Cohn S E and Verlaan M 2014

  25. Constrained Ensemble Kalman Filter State Space Model n ∈ Z + Dynamics Model: v n +1 = Ψ( v n ) + ξ n , n ∈ Z + Data Model: y n +1 = Hv n +1 + η n +1 , Noise Structure: ξ n ∼ N (0 , Σ) , η n ∼ N (0 , Γ) . Sequential Optimization Perspective v ( k ) n +1 = Ψ( v ( k ) n ) + ξ ( k ) n ∈ Z + Predict: n , � n ( v ) = 1 n +1 ) � 2 + 1 − 1 2 � Γ − 1 J ( k ) v ( k ) 2 ( y ( k ) n +1 − Hv ) � 2 2 � � Model/Data Compromise: n +1 ( v − � 2 C v ( k ) n +1 = argmin v ∈A J ( k ) Optimize: n ( v ) Constraint Set: A = { v : Fv = f , Gv � g } .

  26. Example 3 – Seismology Governing Dynamics � � − ∂ 2 d ( z , t ) ∂ c 2 ( z ; θ ) ∂ d ( z , t ) = 0 , ∂ z ∂ z ∂ t 2 d ( H , t ) = d 0 ( t ) , ∂ d (0 , t ) /∂ z = 0 , d ( z , 0) = 0 , ∂ d ( z , 0) /∂ t = 0 . Observation Operator G ( θ ) = ∂ 2 d (0 , t ) /∂ t 2 .

  27. Example 3 – Seismology Parameterization  c 0 0 ≤ z ≤ z 0   � � n  c 0 1 + k ( z − z 0 ) z 0 ≤ z ≤ z 1 c ( z ) = .  � � n   α c 0 1 + k ( z 1 − z 0 ) z 1 ≤ z ≤ H θ = ( c 0 , k , z 0 , n , z 1 , α ) . Constraints 0 ≤ c 0 ≤ 1000 , 0 ≤ k ≤ 100 , 0 ≤ z 0 ≤ z 1 , 0 ≤ n ≤ 1 , z 0 ≤ z 1 ≤ H , 1 ≤ α ≤ 10 .

  28. Example 3 – Seismology Evolution of Ensemble

  29. Example 3 – Seismology Percentage Of Violations c s 0 < 0 60 k < 0 50 z 0 < 0 n < 0 40 z 0 > z 1 , < 1 30 c s 0 > 1000 k > 100 20 n > 1 10 z 1 > H , > 10 0 5 10 15 20 Iteration

  30. Example 3 – Seismology Velocity 0 u y u j =0 7 -0.2 7 u j =40 -0.4 z=H -0.6 -0.8 -1 10 2 10 4 c s (m/s)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend