matrices with integer eigenvalues
play

Matrices with Integer Eigenvalues 4 1 1 0 1 1 4 0 1 - PowerPoint PPT Presentation

Matrices with Integer Eigenvalues 4 1 1 0 1 1 4 0 1 1 1 0 3 0 0 0 1 0 3 0 1 1 0 0 3 Ron Adin Bar-Ilan University


  1. Matrices with Integer Eigenvalues 4 1 1 0 1 −   1 4 0 1 1   −   1 0 3 0 0    0 1 0 3 0    1 1 0 0 3   − −   Ron Adin Bar-Ilan University radin@math.biu.ac.il 1

  2. A Recent Monthly Paper Almost All Integer Matrices Have No Integer Eigenvalues , G. Martin and E. B. Wong, Amer. Math. Monthly 116 (2009), 588-597. We want to deal with (specific) exceptions. 2

  3. Highlights � Certain matrices with integer entries have, conjecturally, integer eigenvalues only. � Partial results are known. � The multiplicity of the zero eigenvalue has an algebraic interpretation. 3

  4. A Signed Graph: Vertices [0, ]: {0,1, , } r r � = … 0 0 , 1 k ≥ a b k � For and let ≤ ≤ + ( , ) : k a b ( , ) U V set of all pairs s.t. Ω = , [0, ], , . U V k U a V b ⊆ = = ( , ) : wt U V u v � Weight: ∑ ∑ = + u U v V ∈ ∈ ( , , ) : ( , ) ( , ) k a b w U V a b set of all Ω = ∈Ω k � . w with weight 4

  5. A Signed Graph: Vertices (cont.) 2, 4. a b w � Example: = = = 0,1: (2,2,4) k = Ω = ∅ k � 2: (2,2,4) {(12,01),(02,02),(01,12)} k = Ω = � k 3: (2,2,4) {(03,01),(12,01),(02,02), k = Ω = � k (01,12),(01,03)} a b a b         , ( ) w w k a b � Note: = + = + − − min max 2 2 2 2                 5

  6. A Signed Graph: Edges ( , ),( , ) ( , , ) U V U V a b w ɶ ɶ � For ∈Ω k , , , u U v V z and write ∈ ℤ ∈ ∈ ( , ) ( , ) U V U V ɶ ɶ if ∼ ( , , ) u v z ( \{ }) { } U U u u z ɶ 1. = ∪ + ( \{ }) { } V V v v z ɶ 2. = ∪ − u v k 3. + ≤ 6

  7. A Signed Graph: Edges ( , ),( , ) ( , , ) U V U V a b w ɶ ɶ � For ∈Ω k , , , u U v V z and write ∈ ℤ ∈ ∈ ( , ) ( , ) U V U V ɶ ɶ if ∼ ( , , ) u v z U u v V ( \{ }) { } U U u u z ɶ 1. u v = ∪ + + ( \{ }) { } V V v v z ɶ 2. = ∪ − U u z v z V ɶ ɶ u v k 3. + − + ≤ 7

  8. A Signed Graph ( , , ) ( , , ) G a b w = k a b w graph with vertex set k Ω � and edges corresponding to the various ( , ) ( , ). U V U V ɶ ɶ ∼ ( , , ) u v z � Loops and multiple edges may occur. � Attach signs to edges: 8

  9. Signs ( , , ), ( , , ) u u u u u u ɶ ɶ ɶ � For define: … … 1 1 a a = = ( , ) 0 u u u u if or has repeated elements; ɶ ɶ ε = ( , ) ( ) ( ) u u sign sign ɶ if ε σ τ = , . u u u u ɶ ɶ … … (1) ( ) (1) ( ) a a < < < < σ σ τ τ { , , }, { , , , , } U u u U u u z u ɶ � For … … … 1 1 a i a = = + u u where , define 1 a < < … ( , ) : (( , , ),( , , , , )). U U u u u u z u ɶ … … … 1 1 a i a = + ε ε (( , ),( , ) ) : ( , ) ( , ) U V U V U U V V ɶ ɶ ɶ ɶ � ε ε ε = ⋅ 9

  10. Signed Adjacency Matrix ( , , ) T a b w = the (signed) adjacency matrix k � ( , , ). G a b w of the graph k Note: � Diagonal elements are nonnegative integers. 0, 1 1. Off-diagonal elements are or − 10

  11. Signed Adjacency Matrix 3, 2, 3, 8 k a b w � Example: = = = = 4 1 1 0 1 −   1 4 0 1 1   −   ( , , ) 1 0 3 0 0 T a b w   = k   0 1 0 3 0   1 1 0 0 3   − −   11

  12. Conjectures � Conjecture: [Hanlon, ’92] ( , , ) T a b w All the eigenvalues of are k nonnegative integers. 12

  13. Conjectures (cont.) r ( , , ) : ( , , ) a b M x y m a b r x y λ � Let = ∑ λ k k , , a b r ( , , ) m a b r = r where multiplicity of as an e.v. k ( , ) ( , , ) . T a b T a b w of = ⊕ k k w � Conjecture: [Hanlon, ’92] k ( , , ) 1 1 i M x y x y xy λ + ( ) λ ∏ k = + + + 0 i = Still open (in general)! 13

  14. Background � Macdonald’s root system conjecture 14

  15. Background � Macdonald’s root system conjecture � Hanlon’s property M conjecture: ( [ ]/( 1 )) ( ) ( 1) k k H L t t H L ℂ + ⊗ + * ⊗ ≅ * L where the Lie algebra is either * semisimple, or * upper triangular (nilpotent), or * Heisenberg (nilpotent) 15

  16. Background � Macdonald’s root system conjecture � Hanlon’s property M conjecture: ( [ ]/( 1 )) ( ) ( 1) k k H L t t H L ℂ + ⊗ + * * ⊗ ≅ L where the Lie algebra is either * semisimple, or * upper triangular (nilpotent), or * Heisenberg (nilpotent) 16

  17. Background � Macdonald’s root system conjecture TRUE [Cherednik, ’95] � Hanlon’s property M conjecture: ( [ ]/( 1 )) ( ) ( 1) k k H L t t H L ℂ + ⊗ + * * ⊗ ≅ L where the Lie algebra is either * semisimple, or * upper triangular (nilpotent), or * Heisenberg (nilpotent) 17

  18. Background � Macdonald’s root system conjecture TRUE [Cherednik, ’95] � Hanlon’s property M conjecture: ( [ ]/( 1 )) ( ) ( 1) k k H L t t H L ℂ + ⊗ + * * ⊗ ≅ L where the Lie algebra is either * semisimple, or TRUE [FGT, ’08] * upper triangular (nilpotent), or * Heisenberg (nilpotent) 18

  19. Background � Macdonald’s root system conjecture TRUE [Cherednik, ’95] � Hanlon’s property M conjecture: ( [ ]/( 1 )) ( ) ( 1) k k H L t t H L ℂ + ⊗ + * * ⊗ ≅ L where the Lie algebra is either * semisimple, or TRUE [FGT, ’08] * upper triangular (nilpotent), or FALSE [Kumar, ’99] * Heisenberg (nilpotent) 19

  20. Background � Macdonald’s root system conjecture TRUE [Cherednik, ’95] � Hanlon’s property M conjecture: ( [ ]/( 1 )) ( ) ( 1) k k H L t t H L ℂ + ⊗ + * * ⊗ ≅ L where the Lie algebra is either * semisimple, or TRUE [FGT, ’08] * upper triangular (nilpotent), or FALSE [Kumar, ’99] * Heisenberg (nilpotent) ? 20

  21. Background (cont.) 0 * *     0 0 * ,   L   � For the 3-dim Heisenberg =  3  { , , },   e f x with basis 0 0 0     * *     the Laplacian ∂∂ + ∂ ∂ [ ]/( 1 ) k L t t + for ⊗ ℂ 3 ( , , ) a b w T a b w is (in a suitable basis). ⊕ k , , � The property M conjecture is then equivalent to (an extension of) ( , ,0) (1 ) k 1 M x y x y + k = + + 21

  22. Partial Results � [Hanlon, ’92] Explicit eigenvalues in the stable case: a b * ≤ a b     w ≤ + * 2 2         a b     ( 1) ( 1) k a b w ≥ − + − + − − * 2 2         22

  23. Partial Results (cont.) � Theorem: [Hanlon, ’92] 1:1 ( , ) ( , ) k a b In the stable case, pairs Ω ↔ λ µ min . w w of partitions with λ µ + = − . ( , ) ab T a b The eigenvalues of are λ µ k − + The proof uses Schur functions in two sets of variables. 23

  24. Partial Results (cont.) � [A.-Athanasiadis, ’96] 1, 2, : a b k 1. The nonzero eigenvalues = = ∀ 1, , 1, ( , , ) k T a b w of are ⊕ λ = w k + … k each with multiplicity (and explicit w distribution over ). 1, , : a b k 2. The multiplicity of the zero e.v.: = ∀ 1 k k +     (1, ,0) ( 1) m b k = = + k 1  b k b    b −     24

  25. Partial Results (cont.) � [Hanlon-Wachs, ’02] , , : a b k Extend result 2 above to ∀ 1 k +   ( , ,0) m a b =  k 1 a b k a b  + − −   25

  26. Partial Results (cont.) � [Kuflik, ’06] ( , , ) : w a b k Distribution over ∀ ( , , ,0) w w m a b w q min coefficient of in − k = 1 k +   1 a b k a b   + − −   q where [ ]! : [1] [2] [ ] , m m ⋯ q q q q = ⋅ [ ] : 1 1 . m m q q − … q = + + + 26

  27. הבשקהה לע הדות ! 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend