math 221 linear algebra
play

Math 221: LINEAR ALGEBRA Chapter 3. Determinants and Diagonalization - PowerPoint PPT Presentation

Math 221: LINEAR ALGEBRA Chapter 3. Determinants and Diagonalization 3-3. Determinants and Diagonalization Le Chen 1 Emory University, 2020 Fall (last updated on 10/21/2020) Creative Commons License (CC BY-NC-SA) 1 Slides are adapted from


  1. Example (continued) Therefore, the eigenvalues of A are λ 1 = 3 , λ 2 = 2 , and λ 3 = 1 . x = � Basic eigenvectors corresponding to λ 1 = 3 : solve (3 I − A ) � 0 . − 1    1 0 0  0 4 − 2 0 2  → · · · → − 1 5 − 2 0 − 1 0 1 0    2 − 1 5 − 2 0 0 0 0 0 1 1  2 t    2  = t 1 1 Thus � x = 2 t  , t ∈ R .   2 t 1  1   as a basic eigenvector corresponding to Choosing t = 2 gives us � x 1 = 1  2 λ 1 = 3 .

  2. Example (continued) x = � Basic eigenvectors corresponding to λ 2 = 2 : solve (2 I − A ) � 0 .    1 0 − 2 0  − 1 4 − 2 0  → · · · → − 1 4 − 2 0 0 1 − 1 0    − 1 5 − 3 0 0 0 0 0

  3. Example (continued) x = � Basic eigenvectors corresponding to λ 2 = 2 : solve (2 I − A ) � 0 .    1 0 − 2 0  − 1 4 − 2 0  → · · · → − 1 4 − 2 0 0 1 − 1 0    − 1 5 − 3 0 0 0 0 0 2 s    2   = s Thus � x =  , s ∈ R . s 1   s 1

  4. Example (continued) x = � Basic eigenvectors corresponding to λ 2 = 2 : solve (2 I − A ) � 0 .    1 0 − 2 0  − 1 4 − 2 0  → · · · → − 1 4 − 2 0 0 1 − 1 0    − 1 5 − 3 0 0 0 0 0 2 s    2   = s Thus � x =  , s ∈ R . s 1   s 1  2   as a basic eigenvector corresponding to Choosing s = 1 gives us � x 2 = 1  1 λ 2 = 2 .

  5. Example (continued) x = � Basic eigenvectors corresponding to λ 3 = 1 : solve ( I − A ) � 0 .    1 0 − 1 0  − 2 4 − 2 0  → · · · → − 1 3 − 2 0 0 1 − 1 0    − 1 5 − 4 0 0 0 0 0

  6. Example (continued) x = � Basic eigenvectors corresponding to λ 3 = 1 : solve ( I − A ) � 0 .    1 0 − 1 0  − 2 4 − 2 0  → · · · → − 1 3 − 2 0 0 1 − 1 0    − 1 5 − 4 0 0 0 0 0 r    1   = r Thus � x =  , r ∈ R . r 1   r 1

  7. Example (continued) x = � Basic eigenvectors corresponding to λ 3 = 1 : solve ( I − A ) � 0 .    1 0 − 1 0  − 2 4 − 2 0  → · · · → − 1 3 − 2 0 0 1 − 1 0    − 1 5 − 4 0 0 0 0 0 r    1   = r Thus � x =  , r ∈ R . r 1   r 1  1   as a basic eigenvector corresponding to Choosing r = 1 gives us � x 3 = 1  1 λ 3 = 1 .

  8. Geometric Interpretation of Eigenvalues and Eigenvectors Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation from R 2 to R 2 .

  9. Geometric Interpretation of Eigenvalues and Eigenvectors Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation from R 2 to R 2 . Problem How does the linear transformation affect the eigenvectors of the matrix?

  10. Geometric Interpretation of Eigenvalues and Eigenvectors Let A be a 2 × 2 matrix. Then A can be interpreted as a linear transformation from R 2 to R 2 . Problem How does the linear transformation affect the eigenvectors of the matrix? Definition � a � be a nonzero vector in R 2 . Then L � Let � v = v is the set of all scalar b multiples of � v, i.e., L � v = R � v = { t � v | t ∈ R } .

  11. Example (revisited) � 4 − 2 � A = has two eigenvalues: λ 1 = 2 and λ 2 = 5 with − 1 3 corresponding eigenvectors � 1 � � − 1 � v 1 = � and � v 2 = 1 1/2

  12. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  13. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  14. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  15. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  16. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  17. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  18. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  19. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  20. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  21. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  22. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  23. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  24. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  25. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  26. Definition Let A be a 2 × 2 matrix and L a line in R 2 through the origin. Then L is said to be A-invariant if the vector A � x lies in L whenever � x lies in L,

  27. Definition Let A be a 2 × 2 matrix and L a line in R 2 through the origin. Then L is said to be A-invariant if the vector A � x lies in L whenever � x lies in L, i.e., A � x is a scalar multiple of � x,

  28. Definition Let A be a 2 × 2 matrix and L a line in R 2 through the origin. Then L is said to be A-invariant if the vector A � x lies in L whenever � x lies in L, i.e., A � x is a scalar multiple of � x, i.e., A � x = λ� x for some scalar λ ∈ R ,

  29. Definition Let A be a 2 × 2 matrix and L a line in R 2 through the origin. Then L is said to be A-invariant if the vector A � x lies in L whenever � x lies in L, i.e., A � x is a scalar multiple of � x, i.e., A � x = λ� x for some scalar λ ∈ R , i.e., � x is an eigenvector of A.

  30. Definition Let A be a 2 × 2 matrix and L a line in R 2 through the origin. Then L is said to be A-invariant if the vector A � x lies in L whenever � x lies in L, i.e., A � x is a scalar multiple of � x, i.e., A � x = λ� x for some scalar λ ∈ R , i.e., � x is an eigenvector of A. Theorem (A-Invariance) v � = 0 be a vector in R 2 . Then L � Let A be a 2 × 2 matrix and let � v is A-invariant if and only if � v is an eigenvector of A.

  31. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  32. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  33. � 4 − 2 � A = − 1 3 y 6 5 4 3 2 1 x − 5 − 4 − 3 − 2 − 1 1 2 3 4 5 6 − 1 − 2 − 3 − 4

  34. Problem Let m ∈ R and consider the linear transformation Q m : R 2 → R 2 , i.e., reflection in the line y = mx. y y = mx x Recall that this is a matrix transformation induced by � 1 − m 2 1 � 2 m A = . m 2 − 1 1 + m 2 2 m Find the lines that pass through origin and are A-invariant. Determine corresponding eigenvalues.

  35. Solution y y = mx x

  36. Solution y y = mx x

  37. Solution y y = mx x

  38. Solution y y = mx x

  39. Solution y y = mx x � 1 � Let � x 1 = . Then L � x 1 is A-invariant, that is, � x 1 is an eigenvector. m Since the vector won’t change, its eigenvalue should be 1 . Indeed, one can verify that � 1 − m 2 � � 1 � 1 1 � � 2 m A � x 1 = = ... = = � x 1 . m 2 − 1 1 + m 2 2 m m m

  40. Solution (continued) y y = mx x

  41. Solution (continued) y y = mx x

  42. Solution (continued) y y = mx x

  43. Solution (continued) y y = mx x

  44. Solution (continued) y y = mx x � − m � Let � x 2 = . Then L � x 2 is A-invariant, that is, � x 2 is an eigenvector. 1 Since the vector won’t change the size, only flip the direction, its eigenvalue should be − 1 . Indeed, one can verify that � 1 − m 2 � m 1 � � − m � � 2 m A � x 2 = = · · · = = − � x 2 . m 2 − 1 1 − 1 1 + m 2 2 m

  45. Example Let θ be a real number, and R θ : R 2 → R 2 rotation through an angle of θ , induced by the matrix � cos θ � − sin θ A = . sin θ cos θ

  46. Example Let θ be a real number, and R θ : R 2 → R 2 rotation through an angle of θ , induced by the matrix � cos θ � − sin θ A = . sin θ cos θ Claim: A has no real eigenvalues unless θ is an integer multiple of π , i.e., ± π, ± 2 π, ± 3 π , etc.

  47. Example Let θ be a real number, and R θ : R 2 → R 2 rotation through an angle of θ , induced by the matrix � cos θ � − sin θ A = . sin θ cos θ Claim: A has no real eigenvalues unless θ is an integer multiple of π , i.e., ± π, ± 2 π, ± 3 π , etc. Consequence: a line L in R 2 is A invariant if and only if θ is an integer multiple of π .

  48. Diagonalization Denote an n × n diagonal matrix by  a 1 0 0 · · · 0 0  0 a 2 0 · · · 0 0    0 0 a 3 · · · 0 0    diag ( a 1 , a 2 , . . . , a n ) =  . . . . . .  . . . . . .   . . . . . .     0 0 0 · · · a n − 1 0   0 0 0 · · · 0 a n

  49. Diagonalization Denote an n × n diagonal matrix by  a 1 0 0 · · · 0 0  0 a 2 0 · · · 0 0    0 0 a 3 · · · 0 0    diag ( a 1 , a 2 , . . . , a n ) =  . . . . . .  . . . . . .   . . . . . .     0 0 0 · · · a n − 1 0   0 0 0 · · · 0 a n Recall that if A is an n × n matrix and P is an invertible n × n matrix so that P − 1 AP is diagonal, then P is called a diagonalizing matrix of A, and A is diagonalizable.

  50. columns vectors into a matrix: Pack the above ... ◮ Suppose we have n eigenvalue-eigenvector pairs: A � x j = λ j � x j , j = 1 , 2 , . . . , n

  51. ... ◮ Suppose we have n eigenvalue-eigenvector pairs: A � x j = λ j � x j , j = 1 , 2 , . . . , n ◮ Pack the above n columns vectors into a matrix: � � � � A � x 1 A � x 2 · · · A � x n = λ 1 � x 1 λ 2 � x 2 · · · λ n � x n || � � A � x 1 � x 2 · · · � x n ||  λ 1  λ 2   � x 1 x 2 · · · x n � � � �       λ n

  52. ◮ By denoting: � � P = � x 1 � x 2 · · · � x n and D = diag ( λ 1 , · · · , λ n ) we see that AP = PD

  53. ◮ By denoting: � � P = � x 1 � x 2 · · · � x n and D = diag ( λ 1 , · · · , λ n ) we see that AP = PD ◮ Hence, provided P is invertible, we have A = PDP − 1 D = P − 1 AP or equivalently

  54. ◮ By denoting: � � P = � x 1 � x 2 · · · � x n and D = diag ( λ 1 , · · · , λ n ) we see that AP = PD ◮ Hence, provided P is invertible, we have A = PDP − 1 D = P − 1 AP or equivalently that is, A is diagonalizable.

  55. Theorem (Matrix Diagonalization) Let A be an n × n matrix. 1. A is diagonalizable if and only if it has eigenvectors � x 1 ,� x 2 , . . . ,� x n so that � � P = � x 1 � x 2 · · · � x n is invertible.

  56. Theorem (Matrix Diagonalization) Let A be an n × n matrix. 1. A is diagonalizable if and only if it has eigenvectors � x 1 ,� x 2 , . . . ,� x n so that � � P = � x 1 x 2 � · · · � x n is invertible. 2. If P is invertible, then P − 1 AP = diag ( λ 1 , λ 2 , . . . , λ n ) where λ i is the eigenvalue of A corresponding to the eigenvector � x i , i.e., A � x i = λ i � x i .

  57. Example   3 − 4 2  has eigenvalues and corresponding basic eigenvectors A = 1 − 2 2  1 − 5 5   1  ; λ 1 = 3 and � x 1 = 1  2  2   ; λ 2 = 2 and x 2 = 1 �  1  1   . λ 3 = 1 and � x 3 = 1  1

  58. Example (continued)   1 2 1 � x 1 x 2 x 3 � 1 1 1 Let P = � � � =  .  2 1 1

  59. Example (continued)   1 2 1 � x 1 x 2 x 3 � 1 1 1 Let P = � � � =  .  2 1 1

  60. Example (continued)   1 2 1 � x 1 x 2 x 3 � 1 1 1 Let P = � � � =  . Then P is invertible (check  2 1 1 this!), so by the above Theorem,  3 0 0  P − 1 AP = diag (3 , 2 , 1) =  . 0 2 0  0 0 1

  61. Remark It is not always possible to find n eigenvectors so that P is invertible.

  62. Remark It is not always possible to find n eigenvectors so that P is invertible. Example   1 − 2 3 Let A = 2 6 − 6  .  1 2 − 1

  63. Remark It is not always possible to find n eigenvectors so that P is invertible. Example   1 − 2 3 Let A = 2 6 − 6  .  1 2 − 1 Then � � x − 1 2 − 3 � � � � = · · · = ( x − 2) 3 . − 2 x − 6 6 c A ( x ) = � � � � − 1 − 2 x + 1 � �

  64. Remark It is not always possible to find n eigenvectors so that P is invertible. Example   1 − 2 3 Let A = 2 6 − 6  .  1 2 − 1 Then � � x − 1 2 − 3 � � � � = · · · = ( x − 2) 3 . − 2 x − 6 6 c A ( x ) = � � � � − 1 − 2 x + 1 � � A has only one eigenvalue, λ 1 = 2 , with multiplicity three. Sometimes, one writes λ 1 = λ 2 = λ 3 = 2 .

  65. Example (continued) x = � To find the 2 -eigenvectors of A, solve the system (2 I − A ) � 0 .     1 2 − 3 0 1 2 − 3 0  → · · · → − 2 − 4 6 0 0 0 0 0    − 1 − 2 3 0 0 0 0 0

  66. Example (continued) x = � To find the 2 -eigenvectors of A, solve the system (2 I − A ) � 0 .     1 2 − 3 0 1 2 − 3 0  → · · · → − 2 − 4 6 0 0 0 0 0    − 1 − 2 3 0 0 0 0 0 The general solution in parametric form is       − 2 s + 3 t − 2 3  = s  + t  , s , t ∈ R . � x = s 1 0    t 0 1

  67. Example (continued) x = � To find the 2 -eigenvectors of A, solve the system (2 I − A ) � 0 .     1 2 − 3 0 1 2 − 3 0  → · · · → − 2 − 4 6 0 0 0 0 0    − 1 − 2 3 0 0 0 0 0 The general solution in parametric form is       − 2 s + 3 t − 2 3  = s  + t  , s , t ∈ R . � x = s 1 0    t 0 1 Since the system has only two basic solutions, there are only two basic eigenvectors, implying that the matrix A is not diagonalizable.

  68. det Example   1 0 1 Diagonalize, if possible, the matrix A = 0 1 0  .  0 0 − 3

  69. Example   1 0 1 Diagonalize, if possible, the matrix A = 0 1 0  .  0 0 − 3 � � x − 1 0 − 1 � � � � = ( x − 1) 2 ( x + 3) . c A ( x ) = det ( xI − A ) = 0 x − 1 0 � � � � 0 0 x + 3 � �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend