math 211 math 211
play

Math 211 Math 211 Lecture #34 Inhomgeneous Equations Forced - PowerPoint PPT Presentation

1 Math 211 Math 211 Lecture #34 Inhomgeneous Equations Forced Harmonic Motion November 15, 2002 2 Inhomogeneous Equations Inhomogeneous Equations Theorem: Assume y p ( t ) is a particular solution to the inhomogeneous equation y


  1. 1 Math 211 Math 211 Lecture #34 Inhomgeneous Equations Forced Harmonic Motion November 15, 2002

  2. 2 Inhomogeneous Equations Inhomogeneous Equations Theorem: Assume • y p ( t ) is a particular solution to the inhomogeneous equation y ′′ + py ′ + qy = f ( t ); • y 1 ( t ) & y 2 ( t ) is a fundamental set of solutions to the homogeneous equation y ′′ + py ′ + qy = 0 . Then the general solution to the inhomogeneous equation is y ( t ) = y p ( t ) + C 1 y 1 ( t ) + C 2 y 2 ( t ) . Return

  3. 3 Method of Undetermined Coefficients Method of Undetermined Coefficients y ′′ + py ′ + qy = f ( t ) The mantra for finding a particular solution is as follows: • If the forcing term f ( t ) has a form which is replicated under differentiation, then look for a particular solution of the same general form as the forcing term. Return

  4. 4 Exponential Forcing Term Exponential Forcing Term y ′′ + py ′ + qy = Ce bt • Example: y ′′ + 3 y ′ + 2 y = 4 e − 3 t • Try y p ( t ) = ae − 3 t ; a to be determined. � Particular solution: y p ( t ) = 2 e − 3 t . • Homogeneous equation: y ′′ + 3 y ′ + 2 y = 0 . � Fundamental set of solutions: e − 2 t & e − t . • General solution to the inhomogeneous equation: y ( t ) = 2 e − 3 t + C 1 e − t + C 2 e − 2 t . Return

  5. 5 Trigonometric Forcing Term Trigonometric Forcing Term y ′′ + py ′ + qy = A cos ωt + B sin ωt • Example: y ′′ + 4 y ′ + 5 y = 4 cos 2 t − 3 sin 2 t • Try y p ( t ) = a cos 2 t + b sin 2 t � Particular solution: y p ( t ) = [28 cos 2 t + 29 sin 2 t ] / 65 . • Homogeneous equation: y ′′ + 4 y ′ + 5 y = 0 � Fund. set of sol’ns: e − 2 t cos t & e − 2 t sin t . • General solution to the inhomogeneous equation: y ( t ) = 28 cos 2 t + 29 sin 2 t + e − 2 t [ C 1 cos t + C 2 sin t ] . 65 Return

  6. 6 Complex Method Complex Method x ′′ + px ′ + qx = A cos ωt or y ′′ + py ′ + qy = A sin ωt. • Solve z ′′ + pz ′ + qz = Ae iωt . � Try z ( t ) = ae iωt . • Then x p ( t ) = Re( z ( t )) and y p ( t ) = Im( z ( t )) . Return Trigonometric forcing

  7. 7 Example Example x ′′ + 4 x ′ + 5 x = 4 cos 2 t • Solve z ′′ + 4 z ′ + 5 z = 4 e 2 it . � Try z ( t ) = ae 2 it . � Particular solution: z ( t ) = (4 − 32 i ) e 2 it / 65 . • Particular solution to the real equation: x p ( t ) = Re( z ( t )) = [4 cos 2 t + 32 sin 2 t ] / 65 . Return

  8. 8 Polynomial Forcing Term Polynomial Forcing Term y ′′ + py ′ + qy = P ( t ) • Example: y ′′ − 3 y ′ + 2 y = 1 − 4 t. � Try y ( t ) = a + bt. � Particular solution: y ( t ) = − 5 − 2 t. • General solution y ( t ) = − 5 − 2 t + C 1 e t + C 2 e 2 t . Return

  9. 9 Exceptional Cases Exceptional Cases • Example: y ′′ − 3 y ′ + 2 y = 3 e t . � Try y ( t ) = ae t � The method does not work because e t is a solution to the associated homogeneous equation. • Try y ( t ) = ate t � Particular solution: y p ( t ) = − 3 te t . • General solution: y ( t ) = − 3 te t + C 1 e t + C 2 e 2 t . • If the suggested particular solution does not work, multiply it by t and try again. Return

  10. 10 Combination Forcing Term Combination Forcing Term Example y ′′ + 5 y ′ + 6 y = 2 e 2 t − 5 cos t • Solve 1 + 6 y 1 = 2 e 2 t y ′′ 1 + 5 y ′ y ′′ 2 + 5 y ′ 2 + 6 y 2 = − 5 cos t • Set y ( t ) = y 1 ( t ) + y 2 ( t ) . Theorem Previous UDC

  11. 11 Forced Harmonic Motion Forced Harmonic Motion Assume an oscillatory forcing term: y ′′ + 2 cy ′ + ω 2 0 y = A cos ωt • A is the forcing amplitude • ω is the forcing frequency • ω 0 is the natural frequency. • c is the damping constant. Return

  12. 12 Forced Undamped Motion Forced Undamped Motion y ′′ + ω 2 0 y = A cos ωt • Homogeneous equation y ′′ + ω 2 0 y = 0 � General solution y ( t ) = C 1 cos ω 0 t + C 2 sin ω 0 t. � If ω = ω 0 we have an exceptional case. Return

  13. 13 • ω � = ω 0 y ′′ + ω 2 0 y = A cos ωt � Look for a particular solution of the form x p ( t ) = a cos ωt + b sin ωt. � We find A x p ( t ) = 0 − ω 2 cos ωt. ω 2 Return

  14. 14 • ω � = ω 0 � General solution A x ( t ) = C 1 cos ω 0 t + C 2 sin ω 0 t + 0 − ω 2 cos ωt. ω 2 � Initial conditions x (0) = x ′ (0) = 0 ⇒ A x ( t ) = 0 − ω 2 [cos ωt − cos ω 0 t ] . ω 2 0 − ω 2 = 17 . � Example: ω 0 = 9 , ω = 8 , A = ω 2 x ( t ) = cos 9 t − cos 8 t. Return Homogeneous Inhomogeneous

  15. 15 • ω � = ω 0 ω = ω 0 + ω δ = ω 0 − ω � Set . and 2 2 ⇒ ω = ω − δ and ω 0 = ω + δ, and A x ( t ) = 0 − ω 2 [cos ωt − cos ω 0 t ] ω 2 = A sin δt sin ωt. 2 ωδ Return ICsol

  16. 16 • ω � = ω 0 � Example: ω = 8 . 5 δ = 0 . 5 . and � Envelope: Slow oscillation with frequency δ , � � A sin δt � � � . ± � � 2 ωδ � � Fast oscillation with frequency ω and varying amplitude. � Beats. Return

  17. 17 • ω = ω 0 y ′′ + ω 2 0 y = A cos ω 0 t. � We have an exceptional case. Try x p ( t ) = t [ a cos ωt + b sin ωt ] . � We find A x p ( t ) = t sin ω 0 t. 2 ω 0 � General solution x ( t ) = C 1 cos ω 0 t + C 2 sin ω 0 t + A t sin ω 0 t. 2 ω 0 Return

  18. 18 • ω = ω 0 � Initial conditions x (0) = x ′ (0) = 0 ⇒ A x ( t ) = t sin ω 0 t. 2 ω 0 ◮ Example: ω 0 = 5 , and A = 2 ω 0 = 10 . x ( t ) = t sin 5 t. � Oscillation with increasing amplitude. � First example of resonance. ◮ Forcing at the natural frequency can cause oscillations that grow out of control. Return

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend