math 12002 calculus i 3 4 curve sketching
play

MATH 12002 - CALCULUS I 3.4: Curve Sketching Professor Donald L. - PowerPoint PPT Presentation

MATH 12002 - CALCULUS I 3.4: Curve Sketching Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 12 Example 1 Example 1 Let x f ( x ) = x 2 9 . Determine


  1. MATH 12002 - CALCULUS I § 3.4: Curve Sketching Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 12

  2. Example 1 Example 1 Let x f ( x ) = x 2 − 9 . Determine intervals where f is increasing, intervals where f is decreasing, the location of all local maxima and minima, intervals where f is concave up, intervals where f is concave down, the location of all inflection points, and all vertical and horizontal asymptotes. D.L. White (Kent State University) 2 / 12

  3. Example 1 We need to determine the signs of f ′ and f ′′ for f ( x ) = x x 2 − 9 . First, 1 · ( x 2 − 9) − x · 2 x f ′ ( x ) = ( x 2 − 9) 2 x 2 − 9 − 2 x 2 = ( x 2 − 9) 2 − x 2 − 9 = ( x 2 − 9) 2 − ( x 2 + 9) = ( x + 3) 2 ( x − 3) 2 Hence f ′ ( x ) is never 0 and f ′ ( x ) is undefined when x = − 3 or x = 3. D.L. White (Kent State University) 3 / 12

  4. Example 1 Using f ′ ( x ) = − ( x 2 +9) ( x 2 − 9) 2 , we have − 2 x ( x 2 − 9) 2 + ( x 2 + 9) · 2( x 2 − 9) · 2 x f ′′ ( x ) = ( x 2 − 9) 4 − ( x 2 − 9) + ( x 2 + 9) · 2 ( x 2 − 9)(2 x ) � � = ( x 2 − 9) 4 − x 2 + 9 + 2 x 2 + 18 � � 2 x · = ( x 2 − 9) 3 2 x · ( x 2 + 27) = ( x + 3) 3 ( x − 3) 3 . Hence f ′′ ( x ) = 0 when x = 0 and f ′′ ( x ) is undefined when x = − 3 or x = 3. D.L. White (Kent State University) 4 / 12

  5. Example 1 − ( x 2 +9) 2 x · ( x 2 +27) x f ( x ) = x 2 − 9 , f ′ ( x ) = ( x +3) 2 ( x − 3) 2 , f ′′ ( x ) = ( x +3) 3 ( x − 3) 3 0 3 − 3 − 1 − − − − x 2 + 9 + + + + ( x − 3) 2 + + + + 0 ( x + 3) 2 + + + + 0 ✲ f ′ ( x ) − X − − X − 2 x − − 0 + + x 2 + 27 + + + + ( x − 3) 3 − − − + 0 ( x + 3) 3 − + + + 0 ✛ f ′′ ( x ) + + − X 0 − X ✲ X X D D D D Inc-Dec ✛ X X D U D U Concave INF ✟ ✡ ✟ ✡ Shape D.L. White (Kent State University) 5 / 12

  6. Example 1 − ( x 2 + 9) 2 x · ( x 2 + 27) x x 2 − 9, f ′ ( x ) = ( x + 3) 2 ( x − 3) 2 , f ′′ ( x ) = f ( x ) = ( x + 3) 3 ( x − 3) 3 − 3 0 3 D D D D Inc-Dec X X D U D U Concave X X INF ✟ ✡ ✟ ✡ Shape f is decreasing on ( −∞ , − 3) ∪ ( − 3 , 3) ∪ (3 , ∞ ); f has no local minimum or local maximum. f is concave up on ( − 3 , 0) ∪ (3 , ∞ ); f is concave down on ( −∞ , − 3) ∪ (0 , 3); f has an inflection point at x = 0. D.L. White (Kent State University) 6 / 12

  7. Example 1 In order to sketch the graph of f , we will need to plot the points whose x coordinates are in the sign chart: x f ( x ) = x 2 − 9 is undefined at x = − 3 and x = 3; 0 0 f (0) = 0 2 − 9 = − 9 = 0. Hence the point (0 , 0) is on the graph. x Horizontal Asymptotes: f ( x ) = x 2 − 9 and the numerator of f has lower degree than the denominator. Hence y = 0 is the horizontal asymptote. x Vertical Asymptotes: f ( x ) = ( x +3)( x − 3) and the denominator is 0 when x = − 3 and when x = 3, and the numerator is not. Hence x = − 3 and x = 3 are vertical asymptotes. D.L. White (Kent State University) 7 / 12

  8. Example 1 0 3 − 3 D D D D Inc-Dec X X D U D U Concave X X INF ✟ ✡ ✟ ✡ Shape ✻ ✛ ✲ q − 6 − 3 (0 , 0), INF 3 6 ❄ D.L. White (Kent State University) 8 / 12

  9. Example 1 D.L. White (Kent State University) 9 / 12

  10. Example 1 D.L. White (Kent State University) 10 / 12

  11. Example 1 D.L. White (Kent State University) 11 / 12

  12. Example 1 D.L. White (Kent State University) 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend