material barriers to momentum and vorticity transport
play

Material Barriers to Momentum and Vorticity Transport George Haller - PowerPoint PPT Presentation

Material Barriers to Momentum and Vorticity Transport George Haller ETH Zrich Collaborators : Stergios Katsanoulis & Markus Holzner (ETH), Davide Gatti & Bettina Frohnapfel (KIT) Transport barriers: frequently discussed -- rarely


  1. Material Barriers to Momentum and Vorticity Transport George Haller ETH Zürich Collaborators : Stergios Katsanoulis & Markus Holzner (ETH), Davide Gatti & Bettina Frohnapfel (KIT)

  2. Transport barriers: frequently discussed -- rarely defined (c (c) (d) (d) Available results: (1) Barriers to advective transport : (e) (e) (f) (f) Lagrangian coherent structures (LCS) (2) Barriers to passive scalar transport : material barriers to diffusion (g) (g) (h) (h H., Karrasch & Kogelbauer, PNAS [2018], SIADS [2020] Katsanoulis, Farazmand, Serra & H., JFM [2020] H., Ann. Rev. Fluid Mech. [2015] (3) Barriers to active vectorial transport ? surfaces impeding transport of Uniform Momentum Zones (UMZ) momentum, vorticity, … Requirement: experimentally verifiable à independent of observer à theory must be objective (frame-indifferent) de Silva, Hutchins & Marusic [2014] 2/16

  3. Objectivity : indifference to the observer “One of the main axioms of continuum mechanics C is the requirement that material response must be independent of the observer .” B M. E. Gurtin, An Introduction to Continuum Mechanics. Academic Press (1981), p. 143 A H., Lagrangian Coherent Structures, Ann. Rev. Fluid Mech. [2015] 3/16

  4. Classic views on transport barriers (as vortex boundaries) are not objective ( ) , ( ) T T W = 1 2 ∇ v − ∇ v ⎡ ⎤ S = 1 2 ∇ v + ∇ v ⎡ ⎤ ⎣ ⎦ ⎣ ⎦ Spin Rate of strain Tensor tensor (non-objective) (objective) ( ) > 0 2 − S 2 NASA Q = 1 W • Q-criterion: 2 ∃ j : Im λ j ( W + S ) ≠ 0 Δ -criterion: • ( ) < 0 λ 2 W 2 + S 2 λ 2 -criterion: • | v | = const ., | v i | = const . • velocity level sets: SouVR Co. Passive tracers Example : Exact linear 2D Navier-Stokes solution H. [2005], Pedergnana, Oettinger, Langlois & H. [2020] ⎛ ⎞ sin 4 t 2 + cos4 t ⎟ ⎜ ⎟ x = v ( x , t ) = ⎟ x , ! ⎜ ⎟ ⎜ ⎟ ⎜ − 2 + cos4 t − sin 4 t ⎝ ⎠ Coherent vortex by all the above principles F. J. Beron-Vera 4/16

  5. Available results for vorticity and momentum barriers u ( x , t ) = e � 4 π 2 νt ( a cos 2 πx 2 , 0) , ω ( x , t ) = 2 πae � 4 π 2 νt sin 2 πx 2 . Example: Decaying 2D channel flow x 2 1 4 u v ( x , t ) Normalized vorticity and its ! Normalized momentum and its ! observed transport barriers observed transport barriers ! 1 1 x 1 1/4 1/4 − 1 4 ρ u 1 ( x , t ) ω ( x , t ) 0 0 ω max ( t ) ρ u max ( t ) − 1 0 -1/4 -1/4 0 1 0 1 Prior prediction for ! Prior prediction for ! vorticity transport barriers momentum transport barriers 1/4 1/4 0 0 -1/4 -1/4 0 1 0 1 H., Karrasch & Kogelbauer, SIADS [2019] Meyers & Meneveau, JFM [2013] (objective) (nonobjective) 5/16

  6. Assumptions on the active vector field f ( x , t ) Consider general velocity field v ( x ,t ) solving the momentum equation • compressible, possibly non-Newtonian • ρ ! v = −∇ p + ∇⋅ T vis + q T vis ( x , t ): viscous stress tensor • q ( x , t ) : external body forces • see, e.g., Gurtin, Fried & Anand [2013] ! f = h vis + h nonvis , ∂ T vis h nonvis = 0 Assume : - active vector field f ( x ,t ) satisfies: • x = Q ( t ) y + b ( t ) ⇒ ! h vis = Q T ( t ) h vis . - h vis is objective : • Examples: ! f : = ρ v → f = ∇ ⋅ T vis −∇ p + q − ! ρ v Lin. momentum: ⎡ ⎤ ! f : = ( x − ˆ f = ( x − ˆ vis + ( x − ˆ x ) × ρ v → x ) ×∇ ⋅ T x ) × ! ρ u −∇ p + q Ang. momentum: ⎢ ⎥ ⎣ ⎦ ( ) + ∇ u ( ) ( ) f − ∇ ⋅ u ( ) f + 1 ! f : = ω f = ν ∇× ρ ∇ ⋅ T ρ q → ρ 2 ∇ ρ ×∇ p + ∇× 1 1 Vorticity: vis 6/16

  7. M ( t ) What is the flux of f ( x , t ) through a material surface ? ( ) = ∫ Vorticity flux: Flux ω M ( t ) ω ⋅ n dA • M ( t ) - not the physical flux of vorticity (units!) - not objective à vortex tubes are observer-dependent ( ) = ( ) dA v ∫ Flux ρ v M ( t ) ρ v v ⋅ n Momentum flux: • M ( t ) t M ( ) M ( t ) = F - not the physical flux of momentum (units!) t 0 0 - no advection through a material surface - not objective ! f ⎡ ⎤ ( ) = ! ∫ ∫ Φ f M ( t ) f ⋅ n dA = h vis ⋅ n dA ⎢ ⎥ • Diffusive flux of f : ⎢ ⎥ vis ⎣ ⎦ M ( t ) M ( t ) - units OK ✓ à Time-normalized - objective ✓ t 1 ( ) = t 1 M ∫ ∫ ψ t 0 h vis ⋅ n dAdt 1 diffusive transport of f : 0 t 1 − t 0 t 0 M ( t ) 7/16

  8. Active barriers : material surfaces minimizing diffusive transport of f ( ) = t 1 M ∫ t 1 ψ t 0 b t 0 ( x 0 ) ⋅ n 0 ( x 0 ) dA Theorem 1: 0 0 Notation : M 0 t 1 1 ( ) : = ( ) ∫ dt with the objective Lagrangian vector field t 1 − t 0 t 0 ( ) * − 1 ( ) ⎡ t x 0 ⎤ t x 0 ( ) ( ) , t F t h vis = ∇ F h vis F ( ) * t F ⎢ ⎥ ⎣ ⎦ t 0 t 0 t 0 t 1 ( x 0 ) : = det ∇ F t b t 0 h vis t 0 t 0 M n 0 ( x 0 ) 0 t 1 ( x 0 ) à Perfect active barriers:= b t 0 x 0 robust material surfaces with pointwise zero active transport Theorem 2: Active barriers are structurally stable 2D invariant manifolds of • Objective, steady , ′ t 1 ( x 0 ) x 0 = b t 0 Material (Lagrangian) barrier equation volume-preserving ′ x = h vis ( x ; t , v , f ) Instantaneous (Eulerian) barrier equation • Active LCS methods: passive LCS methods applied to barrier equations 2D stable and unstable manifolds ! 2D stable and unstable manifolds ! 2D invariant tori of fixed points of periodic orbits GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 8/16

  9. Example 1: Active barriers in directionally steady 3D Beltrami flows ω = k ( t ) v , v ( x , t ) = α ( t ) v 0 ( x ). 3D, unsteady, viscous e.g., unsteady ABC flow: v = e − ν t v 0 ( x ), v 0 = ( A sin x 3 + C cos x 2 , B sin x 1 + A cos x 3 , C sin x 2 + B cos x 1 ) Theorem: In all directionally steady, 3D Beltrami flows: active barriers = classic LCS t 1 ∫ k 2 νρ α ( t ) dt t 0 ′ x 0 = − v 0 ( x 0 ) Lagrangian barrier eq. vorticity norm t 1 − t 0 sectional streamlines ′ x = − νρ k 2 α ( t ) v 0 ( x ) Eulerian barrier eq. values of the Q parameter active Poincaré maps GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 9/16

  10. Example 1: Active LCS methods for the ABC flow 10 ( x 0 ; ω ) 15 ( x 0 ; ω ) 5 ( x 0 ) FTLE 0 aFTLE 0,5 aFTLE 0,5 x 15 ( x 0 ; ω ) 50 ( x 0 ; ω ) 5 ( x 0 ) PRA 0 aPRA 0,5 aPRA 0,5 GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 10/16

  11. Example 2: Active transport barriers in 2D incompressible Navier-Stokes flows data set: Mohammad Farazmand (NCS) Eulerian momentum barriers at time t =0 0.05 ( x ; ρ u ) 0.15 ( x ; ρ u ) 0 ( x ) FTLE 0 FTLE 0,0 FTLE 0,0 y y y y y y In 2D: Eulerian momentum barrier eq. is an x x x autonomous Hamiltonian system! 0.1 ( x ; ρ u ) 0.15 ( x ; ρ u ) 0 ( x ) ′ PRA 0 PRA 0,0 x = J ∇ H ( x ), PRA 0,0 y y y y y y H ( x ) = νρ ! ω z ( x ; t ). x x x GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 11/16

  12. Example 2: Lagrangian momentum and vorticity barriers over [t 0 ,t 1 ] = [0,25] 0.35 ( x 0 ; ρ u ) 0.05 ( x 0 ; ω ) 25 ( x 0 ) FTLE 0 FTLE 0,25 FTLE 0,25 y y y y y y y y y y y y In 2D: Lagrangian momentum barrier eq. is an autonomous Hamiltonian system! ′ x = J ∇ 0 H ( x 0 ), t ( x 0 ), t ). H ( x 0 ) = νρ ω z ( F x x x x x x t 0 0.35 ( x 0 ; ρ u ) 0.05 ( x 0 ; ω ) 25 ( x 0 ) PRA 0,25 PRA 0,25 PRA 0 y y y y y y In 2D: Lagrangian vorticity barrier eq. is an autonomous Hamiltonian system! ′ x = J ∇ 0 H ( x 0 ), t 1 ( x 0 ), t 1 ) − ω z ( x 0 , t 0 )]. H ( x 0 ) = νρ [ ω z ( F t 0 x x x GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 12/16

  13. Example 2: Coherence of material barriers to momentum transport Momentum-barrier evolution and momentum norm | ρ u ( x , t ) | t = 25 t = 0 y y y y y y y y in Eulerian ! coordinates x x | ρ u ( F t = 0 t = 25 t ( x 0 ), t ) | y y y y y y y y 0 in Lagrangian ! coordinates x x GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 13/16

  14. Example 3: Active transport barriers in 3D channel flow (Re=3,000) Eulerian active barriers at time t =0 from FTLE (a) 2 400 FTLE 0 0 ( x ) 6 1 . 5 300 4 2 y/h y + 1 200 2 1 0 . 5 100 0.3 0 30 0 0 0 (b) aFTLE 31 2 400 0 , 0 ( x ; ρ u ) 6 1 . 5 300 4 4 y/h y + 1 200 2 2 0 . 5 100 0.3 30 0 0 0 0 (c) 2 400 aFTLE 0 . 62 0 , 0 ( x ; ω ) 1 . 5 300 6 4 y/h y + 1 200 4 2 0 . 5 100 0.3 2 30 0 0 0 0 1 2 3 4 5 6 0 z/h GH, Katsanoulis, Holzner, Frohnapfel & Gatti, Objective material barriers to the transport of momentum and vorticity, JFM, in revision 14/16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend