marseille 2019 on the digits of primes
play

Marseille 2019 On the digits of primes In memoriam Christian - PowerPoint PPT Presentation

Marseille 2019 On the digits of primes In memoriam Christian MAUDUIT Jo e l RIVAT Institut de Math e matiques de Marseille, Universit e dAix-Marseille. 1 2 Digits Let q 2 be an integer. Any n N can be written j ( n


  1. Marseille 2019 On the digits of primes In memoriam Christian MAUDUIT Jo ¨ e l RIVAT Institut de Math ´ e matiques de Marseille, Universit ´ e d’Aix-Marseille. 1

  2. 2

  3. Digits Let q � 2 be an integer. Any n ∈ N can be written � ε j ( n ) q j , n = ε j ( n ) ∈ { 0 , . . . , q − 1 } . j � 0 The sum of digits function � s( n ) = ε j ( n ) j � 0 has been studied in many directions: ergodicity, finite automata, dynamical systems, harmonic analysis, number theory, etc. Mahler, 1927: For q = 2 , the sequence   �  1 ( − 1) s ( n ) ( − 1) s ( n + k )  N n<N N � 1 converges for all k ∈ N and its limit is different from zero for infinitely many k ’s. 3

  4. Histogram of the sum of binary digits of integers (binomial distribution) card { n � 10 10 , s( n ) = k } · 10 9 1 . 4 1 . 2 1 0 . 8 0 . 6 0 . 4 0 . 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 k 4

  5. Gelfond’s paper Gelfond, 1968: The sum of digits in base q � 2 is well distributed along arithmetic progressions. More precisely given m � 2 with ( m, q − 1) = 1 , there exists an explicit σ m > 0 such that ∀ m ′ ∈ N ∗ , ∀ ( n ′ , s ) ∈ Z 2 , � x mm ′ + O ( x 1 − σ m ) . 1 = n � x n ≡ n ′ mod m ′ s( n ) ≡ s mod m A.O. Gelfond 5

  6. Gelfond’s problems, 1968 1. Evaluate the number of prime numbers p � x such that s( p ) ≡ a mod m . 2. Evaluate the number of integers n � x such that s( P ( n )) ≡ a mod m , where P is a suitable polynomial [for example P ( n ) = n 2 ] . 6

  7. Histogram of the sum of binary digits of prime numbers card { p � 10 10 , s( p ) = k } · 10 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 k 7

  8. Sum of binary digits of prime numbers in residue classes modulo 2 modulo 3 modulo 4 2 . 5 · 10 8 · 10 8 · 10 8 1 . 2 1 . 5 2 1 0 . 8 1 1 . 5 0 . 6 1 0 . 4 0 . 5 0 . 5 0 . 2 0 0 0 0 1 0 1 2 0 1 2 3 modulo 5 modulo 6 modulo 7 1 · 10 8 · 10 7 · 10 7 8 0 . 8 6 6 0 . 6 4 4 0 . 4 2 2 0 . 2 0 0 0 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 8

  9. Partial results Fouvry–Mauduit (1996): � � 1 � C ( q, m ) 1 . log log x n � x n � x n = p or n = p 1 p 2 n = p or n = p 1 p 2 s( n ) ≡ a mod m Dartyge–Tenenbaum (2005): For r � 2 , � � C ( q, m, r ) 1 � 1 . log log x log log log x n � x n � x n = p 1 ...p r n = p 1 ...p r s( n ) ≡ a mod m 9

  10. Gelfond’s conjecture for primes Mauduit-Rivat, 2010: If ( q − 1) α ∈ R \ Z , there exists C q ( α ) > 0 and σ q ( α ) > 0 , � � � � � � � � � C q ( α ) x 1 − σ q ( α ) . � � exp(2 iπα s( p )) � � � p � x Hence • For q � 2 the sequence ( α s( p n )) n � 1 is equidistributed modulo 1 if and only if α ∈ R \ Q (here ( p n ) n � 1 denotes the sequence of prime numbers). • (Gelfond’s problem): for q � 2 , m � 2 such that ( m, q − 1) = 1 and a ∈ Z , � � 1 1 ∼ 1 ( x → + ∞ ) . m p � x p � x s( p ) ≡ a mod m 10

  11. Histogram of local result for prime numbers card { p � 10 10 , s( p ) = k } · 10 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 20 21 22 23 24 25 26 27 28 29 30 31 32 33 k 11

  12. Local result for prime numbers Drmota-Mauduit-Rivat, 2009: uniformly for all integers k � 0 with ( k, q − 1) = 1 # { p � x : s( p ) = k } � � − ( k − µ q log q x ) 2 � � q − 1 π ( x ) + O ((log x ) − 1 2 + ε ) = � exp , 2 σ 2 ϕ ( q − 1) 2 πσ 2 q log q x q log q x where q = q 2 − 1 µ q = q − 1 σ 2 , 2 12 and ε > 0 is arbitrary but fixed. Such a local result was considered by Erd˝ os as “ hopelessly difficult ” . 12

  13. Discrete Fourier Transform For f : N → C and λ ∈ N we define a 2 λ -periodic function f λ : Z → C by ∀ u ∈ { 0 , . . . , 2 λ − 1 } , f λ ( u ) = f ( u ) and its Discrete Fourier Transform � − 2 iπut � � f λ ( t ) = 1 � f λ ( u ) exp . 2 λ 2 λ 0 � u< 2 λ   1 / 2 � � � � � 2 � � � � �� ��   � 2 = f λ ( h ) = 1 . By orthogonality f λ � 0 � h< 2 λ � � � � � � � � �� �� A non-trivial upper bound for f λ � ∞ or f λ � 1 is a challenging problem. � � � � �� � 1 = O (2 ηλ ) with η < 1 / 2 was crucial for solving Gelfond’s conjecture. Getting f λ 13

  14. The Rudin-Shapiro sequence � j � 1 ε j − 1 ( n ) ε j ( n ) . Let f ( n ) = ( − 1) � � − 2 iπut/ 2 λ �� f λ ( t ) = 2 − λ · Schapiro polynomial For λ ∈ N , we have � exp , hence � � 1 − λ � � �� 2 . f λ � ∞ � 2 � � � � �� � 2 = 1 , by Cauchy-Schwarz it is easy to deduce that Since f λ � � λ − 1 λ � � �� 2 f λ � 1 � 2 2 � 2 � � � � � 1 = O (2 ηλ ) with η < 1 �� The proof for the sum of digits function requires f λ 2 . This is not satisfied for the Rudin-Shapiro sequence !!! 14

  15. Histogram of “ Rudin-Shapiro sums ” of prime numbers � � p � 10 10 , � card j � 1 ε j − 1 ( p ) ε j ( p ) = k · 10 7 6 5 . 5 5 4 . 5 4 3 . 5 3 2 . 5 2 1 . 5 1 0 . 5 0 − 0 . 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 k 15

  16. “ Rudin-Shapiro sums ” of prime numbers in residue classes modulo 2 modulo 3 modulo 4 2 . 5 · 10 8 · 10 8 · 10 8 1 . 2 1 . 5 2 1 0 . 8 1 . 5 1 0 . 6 1 0 . 4 0 . 5 0 . 5 0 . 2 0 0 0 0 1 0 1 2 0 1 2 3 modulo 5 modulo 6 modulo 7 1 · 10 8 · 10 7 · 10 7 8 6 0 . 8 6 0 . 6 4 4 0 . 4 2 2 0 . 2 0 0 0 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 16

  17. Rudin-Shapiro sequences of order δ Let δ ∈ N and β δ ( n ) the number of occurencies of patterns 1 ∗ · · · ∗ 1 , i.e. of the form 1 w 1 � �� � δ (where w ∈ { 0 , 1 } δ ) in the representation of n : � β δ ( n ) = ε k − δ − 1 ( n ) ε k ( n ) . k � δ +1 Mauduit-Rivat, 2015: for any δ ∈ N , α ∈ R , ϑ ∈ R and x � 2 , there exists explicit constants C ( δ ) and σ ( α ) > 0 such that � � � � � � � 11 4 x 1 − σ ( α ) � � Λ( n ) e ( β δ ( n ) α + ϑn ) � � C ( δ ) (log x ) � � � n � x and � � � � � � � 11 4 x 1 − σ ( α ) . � � µ ( n ) e ( β δ ( n ) α + ϑn ) � � C ( δ ) (log x ) � � � n � x 17

  18. Rudin-Shapiro sequences of degree d Let d ∈ N with d � 2 and b d ( n ) denote the number of occurencies of 1 · · · 1 i.e. blocks of d � �� � d consecutive 1 ’s in the representation of n in base 2 : � b d ( n ) = ε k − d +1 ( n ) · · · ε k ( n ) . k � d − 1 Mauduit-Rivat, 2015: for any d ∈ N with d � 2 , α ∈ R , ϑ ∈ R and x � 2 there exist an explicit constant σ ( d, α ) > 0 such that � � � � � � � 11 4 x 1 − σ ( d,α ) , � � � ≪ (log x ) Λ( n ) e ( b d ( n ) α + ϑn ) � � � n � x � � � � � � � 11 4 x 1 − σ ( d,α ) . � � µ ( n ) e ( b d ( n ) α + ϑn ) � ≪ (log x ) � � � n � x 18

  19. General result – Definitions Let U = { z ∈ C , | z | = 1 } . Definition 1 A function f : N → U has the carry property if, uniformly for ( λ, κ, ρ ) ∈ N 3 with ρ < λ , the number of integers 0 � ℓ < q λ such that there exists ( k 1 , k 2 ) ∈ { 0 , . . . , q κ − 1 } 2 with f ( ℓq κ + k 1 + k 2 ) f ( ℓq κ + k 1 ) � = f κ + ρ ( ℓq κ + k 1 + k 2 ) f κ + ρ ( ℓq κ + k 1 ) is at most O ( q λ − ρ ) where the implied constant may depend only on q and f . Definition 2 Given a non decreasing function γ : R → R satisfying lim λ → + ∞ γ ( λ ) = + ∞ and c > 0 we denote by F γ,c the set of functions f : N → U such that for ( κ, λ ) ∈ N 2 with κ � cλ and t ∈ R : � � � � � � � � � q − λ f ( uq κ ) e ( − ut ) � q − γ ( λ ) . � � � � � � 0 � u<q λ 19

  20. General result Let γ : R → R be a non decreasing function satisfying lim λ → + ∞ γ ( λ ) = + ∞ , c � 10 and f : N → U be a function satisfying Definition 1 and f ∈ F γ,c in Definition 2. Then for any θ ∈ R we have � � � � � � � � ≪ c 1 ( q )(log x ) c 2 ( q ) x q − γ (2 ⌊ (log x ) / 80 log q ⌋ ) / 20 , � � Λ( n ) f ( n ) e ( θn ) � � � n � x with explicit c 1 ( q ) and c 2 ( q ) . Of course the same estimate holds if we replace the von Mangoldt function Λ by the M ¨ o bius function µ . M¨ ullner, 2018, has extended this result to all automatic sequences ! 20

  21. Primes in two bases Drmota-Mauduit-Rivat, 2019+: If f is a strongly q 1 -multiplicative function and g a strongly q 2 -multiplicative function such that ( q 1 , q 2 ) = 1 and f is is not of the form n �→ e( kn/ ( q 1 − 1)) with k ∈ Z , then we have uniformly for ϑ ∈ R � � � � � � � � � log x � � Λ( n ) f ( n ) g ( n ) e( ϑn ) � ≪ x exp − c � � log log x � n � x for some positive constant c . The proof uses Schlickewei’s p -adic subspace theorem and Bakers’s theorem on linear form of logarithms. This does not permit to save a power of x . 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend