maps in shape collections
play

Maps in Shape Collections Descriptor and Subspace Learning Feature - PowerPoint PPT Presentation

Maps in Shape Collections Descriptor and Subspace Learning Feature selection for shape matching Extraction the most stable correspondences from a collection of mappings Networks of Maps Cycle consistency constraint Latent spaces Application


  1. Maps in Shape Collections Descriptor and Subspace Learning Feature selection for shape matching Extraction the most stable correspondences from a collection of mappings Networks of Maps Cycle consistency constraint Latent spaces Application to co-segmentation Metrics and Shape Differences A functional representation of intrinsic distortions introduced for analysis purposes Potential application to geometry synthesis December 6, 2016 1 / 42

  2. Part I Descriptor and Subspace Learning Feature selection for shape matching Extraction the most stable correspondences from a collection of mappings December 6, 2016 2 / 42

  3. Functional Map Approximation Functional map approximation [Ovsjanikov et al., 2012]: � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 C ⋆ i = arg min F C M N A i functions on N i ∆ i Laplacian on N i December 6, 2016 3 / 42

  4. Functional Map Approximation Functional map approximation [Ovsjanikov et al., 2012]: � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 C ⋆ i = arg min F C Probe functions Any functions stable by nearly-isometric deformation In practice: HKS [Sun et al., 2009], WKS [Aubry et al., 2011], Curvatures... ◮ Non-unique solution December 6, 2016 3 / 42

  5. Functional Map Approximation Functional map approximation [Ovsjanikov et al., 2012]: � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 C ⋆ i = arg min F C Probe functions Any functions stable by nearly-isometric deformation In practice: HKS [Sun et al., 2009], WKS [Aubry et al., 2011], Curvatures... Regularization: Assume nearly isometric deformations Commutativity of C with the Laplace-Beltrami operator: C∆ 0 = ∆ i C ◮ It can be difficult to a obtain good approximation December 6, 2016 3 / 42

  6. Main Challenges C ⋆ � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 i = arg min F C ◮ The probe functions can be inconsistent (a) Smoothed Gaussian curvature. (b) Logarithm of the absolute value of Gaussian Curvature. December 6, 2016 4 / 42

  7. Main Challenges C ⋆ � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 i = arg min F C ◮ The probe functions can be inconsistent (a) Smoothed Gaussian curvature. (b) Logarithm of the absolute value of Gaussian Curvature. Weight the probe functions [Corman et al., 2014]: � CA 0 D − A i D � 2 F + α � C∆ 0 − ∆ i C � 2 C ⋆ i ( D ) = arg min F C December 6, 2016 4 / 42

  8. Main Challenges C ⋆ � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 i = arg min F C ◮ The approximation is not reliable on the entire functional space C ⋆ f f December 6, 2016 5 / 42

  9. Main Challenges C ⋆ � CA 0 − A i � 2 F + α � C∆ 0 − ∆ i C � 2 i = arg min F C ◮ The approximation is not reliable on the entire functional space C ⋆ f f Learn the functional subspace S p ⊂ L 2 ( M ) of dimension p such that: C T f ≈ C ⋆ f , ∀ f ∈ S p December 6, 2016 5 / 42

  10. Feature Selection Training Set December 6, 2016 6 / 42

  11. Feature Selection N N D ⋆ ∈ arg min � � � C ⋆ � ( C ⋆ i ( D ⋆ ) − C i ) Y � 2 i ( D ) − C i � ; Y p ∈ arg min F D Y ⊤ Y = I p i =1 i =1 Training Set C 1 C 2 C 3 C 4 C 5 December 6, 2016 6 / 42

  12. Feature Selection N N D ⋆ ∈ arg min � � � C ⋆ � ( C ⋆ i ( D ⋆ ) − C i ) Y � 2 i ( D ) − C i � ; Y p ∈ arg min F D Y ⊤ Y = I p i =1 i =1 D ⋆ : optimal weights Training Set Y p : basis of S p C 1 C 2 C 3 C 4 C 5 December 6, 2016 6 / 42

  13. Feature Selection N N D ⋆ ∈ arg min � � � C ⋆ � ( C ⋆ i ( D ⋆ ) − C i ) Y � 2 i ( D ) − C i � ; Y p ∈ arg min F D Y ⊤ Y = I p i =1 i =1 D ⋆ : optimal weights Training Set Y p : basis of S p Unseen shape C 1 C 2 C ⋆ p ( D ⋆ ) = C ( D ⋆ ) Y p C 3 C 4 C 5 December 6, 2016 6 / 42

  14. Stable function subspace Reduced basis extraction: y 1 y 2 y 3 y 4 Correspondences: December 6, 2016 7 / 42

  15. Non-Isometric matching Training Set Unseen Poses 100 basis functions 310 probe functions Training set: 10 shapes of women + 1 reference shape of man 50 functions in the reduced basis December 6, 2016 8 / 42

  16. Results: Non Isometric matching December 6, 2016 9 / 42

  17. Conclusion Naive Map Learned Map ◮ The functional maps quality can be improved by weighting the probe functions ◮ Learning makes the functional maps more stable with respect to large deformations December 6, 2016 10 / 42

  18. Part II Network of Maps A non-supervised regularization for shape matching Cycle consistency constraint Latent spaces December 6, 2016 11 / 42

  19. Graph of Maps 3 2 4 C 3 C 2 C 4 C 5 C 1 5 0 1 ◮ Compact description the entire network by composition (e.g. C 45 = C 05 C 40 ) December 6, 2016 12 / 42

  20. Graph of Maps 3 2 4 C 3 C 2 C 4 C 5 C 1 5 0 1 ◮ Compact description the entire network by composition (e.g. C 45 = C 05 C 40 ) ◮ Suppose a star graph structure ◮ The results depends on the reference shape December 6, 2016 12 / 42

  21. Graph of Maps 3 2 4 5 1 How to use general graph structure? How to impose coherence and consistency? How a shzpe collection help solving shape matching problem? December 6, 2016 13 / 42

  22. Cycle Consistency Constraint Consistent Path December 6, 2016 14 / 42

  23. Cycle Consistency Constraint Consistent Path Inconsistent Path December 6, 2016 14 / 42

  24. Cycle Consistency Constraint Consistent Path Inconsistent Path ◮ Strong regularization ◮ Allows detection and correction of errors ◮ Characterized by: C ij = C kj C ik December 6, 2016 14 / 42

  25. Cycle Consistency and Low Rank Matrix ◮ Can be difficult to enforce in an optimization problem: C ij = C kj C ik ◮ Equivalent to a low rank or semi-definiteness condition on a big mapping matrix [Huang et al., 2014]    Y +  C 11 · · · C N 1 1 . . . ... � � C := . .  = . · · · � 0     Y 1 Y N . . .    Y + C 1 N · · · C NN N December 6, 2016 15 / 42

  26. Cycle Consistency and Low Rank Matrix ◮ Can be difficult to enforce in an optimization problem: C ij = C kj C ik ◮ Equivalent to a low rank or semi-definiteness condition on a big mapping matrix [Huang et al., 2014]    Y +  C 11 · · · C N 1 1 . . . ... � � C := . .  = . · · · � 0     Y 1 Y N . . .    Y + C 1 N · · · C NN N C is semi-definite Rank of C is very low compared to the number of shapes December 6, 2016 15 / 42

  27. Computation of a Functional Map Network Given descriptors on each shape, we can compute the functional map network: C ⋆ = min � � C ij A i − A j � 2 , 1 + Reg( C ij ) + λ � C � ⋆ C ( i,j ) ∈G December 6, 2016 16 / 42

  28. Computation of a Functional Map Network Given descriptors on each shape, we can compute the functional map network: C ⋆ = min � � C ij A i − A j � 2 , 1 + Reg( C ij ) + λ � C � ⋆ C ( i,j ) ∈G ◮ Nuclear norm � X � ⋆ = � i σ i ( X ) is the convex regularization of the rank ◮ Convex optimization problem solved with ADMM December 6, 2016 16 / 42

  29. Computation of a Functional Map Network Given descriptors on each shape, we can compute the functional map network: C ⋆ = min � � C ij A i − A j � 2 , 1 + Reg( C ij ) + λ � C � ⋆ C ( i,j ) ∈G ◮ Nuclear norm � X � ⋆ = � i σ i ( X ) is the convex regularization of the rank ◮ Convex optimization problem solved with ADMM Unlike separate computation of the functional map this setting: ◮ Removes descriptors outliers ◮ Enforces coherence between in the network December 6, 2016 16 / 42

  30. Latent Spaces 3 2 4 Y 3 Y 4 Y 2 ? Y 5 Y 1 5 1     Y + · · · C 11 C N 1 1 . . . ... � � . .  = . Y 1 · · · Y N     . . .    Y + · · · C 1 N C NN N December 6, 2016 17 / 42

  31. Latent Spaces 3 2 4 Y 3 Y + 4 Y 5 Y 4 Y 2 ? Y 5 Y 1 5 1     Y + · · · C 11 C N 1 1 . . . ... � � . .  = . Y 1 · · · Y N     . . .    Y + · · · C 1 N C NN N December 6, 2016 17 / 42

  32. Latent Spaces 3 2 4 Y 3 Y + 4 Y 5 Y 4 Y 2 ? Y 5 Y 1 5 1     Y + · · · C 11 C N 1 1 . . . ... � � . .  = . Y 1 · · · Y N     . . .    Y + · · · C 1 N C NN N ◮ The Y i can be understood as functional maps to an abstract surface called “latent space” December 6, 2016 17 / 42

  33. Orthogonal Basis Synchronization Cycle consistency as hard constraint: � � C ij − Y + j Y i � 2 F s . t . Y ⊤ min i Y i = I Y 1 ,..., Y N ( i,j ) ∈G Given a map network C ij , ( i, j ) ∈ G (with possible inconsistencies and missing edges), performing the factorization can be used to: ◮ Regularize and clean up functional maps ◮ Extract shared structure ◮ Find the most representative reference abstract shape ◮ Efficient storage of large network December 6, 2016 18 / 42

  34. Application to Cosegmentation [Huang et al., 2014] Input: Shape collection and local descriptors Output: Consistent segmentation ◮ Joint map optimization C ⋆ = min � � C ij A i − A j � 2 , 1 + λ � C � ⋆ C ( i,j ) ∈G December 6, 2016 19 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend