manipulating exponential products
play

Manipulating exponential products Instead of working with - PowerPoint PPT Presentation

Intro Controllability Series expansions Exp-prod Manipulating exponential products Instead of working with complicated concatenations of flows t 9 t 2 t 1 t 8 ( f 0 + f 1 + f 2 ) dt . . . e t 1 ( f 0 + f 1 f 2 ) dt e 0 (


  1. Intro Controllability Series expansions Exp-prod Manipulating exponential products Instead of working with complicated concatenations of flows � t 9 � t 2 � t 1 t 8 ( f 0 + f 1 + f 2 ) dt ◦ . . . e t 1 ( f 0 + f 1 − f 2 ) dt ◦ e 0 ( f 0 + f 1 + f 2 ) dt ( p ) z ( t ) = e it is desirable to rewrite the solution curve using a minimal number of vector fields f π k that span the tangent space (typically using iterated Lie brackets of the system fields f 0 , f 1 , . . . f m ) Coordinates of the first kind z ( t ) = e b 1 ( t , u ) f π 1 + b 2 ( t , u ) f π 1 + b 3 ( t , u ) f π 3 + ... + b n ( t , u ) f π n ( p ) Coordinates of the second kind z ( t ) = e c 1 ( t , u ) f π 1 ◦ e c 2 ( t , u ) f π 1 ◦ e c 3 ( t , u ) f π 3 ◦ . . . ◦ e c n ( t , u ) f π n ( p ) Using the Campbell-Baker-Hausdorff formula , this is possible, but a book-keeping nightmare. Moreover, the CBH formula does not use a basis, but uses linear combinations of all possible iterated Lie brackets. Yet, by

  2. Intro Controllability Series expansions Exp-prod Series expansions: Lift to universal, free system • Starting with an affine, real analytic system on R n m � ˙ x = u i ( t ) f i ( x ( t )) i = 1 • or (chronological calculus), work with induced system on the algebra C ∞ ( M ) of smooth functions Basically, from ˙ x = f u ( x ) to f u : Φ �→ ( f u Φ) = �∇ Φ , f u � • Formally, on free associative algebra ˆ A ( Z ) over a set Z = { X 1 , . . . X m } of m indeterminates consider system m � ˙ S = S ( t ) · u i ( t ) X i i = 1

  3. Intro Controllability Series expansions Exp-prod Formal solution – Chen-Fliess series m � ˙ S = S ( t ) · u i ( t ) X i , S ( 0 ) = I i = 1 on algebra ˆ A ( Z ) of formal power series in the noncommuting indeterminates (letters) X 1 , . . . X m has the unique solution � T � t 1 � t p − 1 � CF ( T , u ) = · · · u i p ( t p ) . . . u i 1 ( t 1 ) dt 1 . . . dt p X i 1 . . . X i p 0 0 0 � �� � I � �� � X I Υ I ( T , u ) Use as asymptotic expansion for evolution of output y = ϕ ( x ) along solution of ˙ x = u 1 f 1 ( x ) + . . . u m f m ( x ) . � T � t 1 � t p − 1 � ϕ ( x ( T , u )) ∼ · · · u i p ( t p ) . . . u i 1 ( t 1 ) dt 1 . . . dt p ( f i 1 . . . f i p ϕ )( x 0 ) 0 0 0 I

  4. Intro Controllability Series expansions Exp-prod Series expansions, intro Splitting into geometric state-dependent and time-varying parts ˙ x = u 1 ( t ) f 1 ( x ) + . . . + u m ( t ) f m ( x ) = F ( t , x ) = ϕ ( x ) y f i : M �→ TM smooth vector fields on manifold M n , u : [ 0 , T ] �→ U ⊂⊂ R m measurable controls/perturbations, and φ ∈ C ω ( M ) measured output.

  5. Intro Controllability Series expansions Exp-prod Series solution by iteration φ ( x ( t , u )) = 1 · φ ( x 0 ) � t + 0 u a ( s ) ds ( f a φ )( x 0 ) � t + 0 u b ( s ) ds ( f b φ )( x 0 ) � t � s 1 � s 1 + 1 0 u a ( s 1 ) u a ( s 2 ) ds 2 ds 1 ( f a f a φ )( x 0 ) 2 0 0 � t � s 1 + 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b φ )( x 0 ) 2 0 � t � s 1 + 1 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 ( f b f a φ )( x 0 ) 2 0 � t � s 1 + 1 0 u b ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f b f b φ )( x 0 ) 2 0 � t � s 1 � s 2 + 1 0 u a ( s 1 ) u a ( s 2 ) u a ( s 3 ) ds 3 ds 2 ds 1 ( f a f a f a φ )( x 0 ) 6 0 0 + . . . Objective: Collect first order differential operators, and minimize number of higher order differential operators involved

  6. Intro Controllability Series expansions Exp-prod Integrate by parts: The wrong way to do it � t � s 1 � t � s 1 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a = 0 0 � t � s 1 � t � s 1 = 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f a f b − 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a 0 0 � t � s 1 � t � s 1 + 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 f b f a + 0 u b ( s 1 ) u a ( s 2 ) ds 2 ds 1 f b f a 0 0 � t � s 1 = 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) 0 � � � t � s 1 � s 1 + u a ( s 1 ) 0 u b ( s 2 ) + u b ( s 1 ) 0 u a ( s 2 ) ds 2 ds 1 f b f a 0 � t � s 1 = 0 u a ( s 1 ) u b ( s 2 ) ds 2 ds 1 ( f a f b − f b f a ) 0 �� t � �� t � + 0 u a ( s ) ds · 0 u b ( s ) ds f b f a Lie brackets together w/ iterated integrals in right order higher order deriv’s (wrong order) w/ pointwise prod’s of int’s

  7. Intro Controllability Series expansions Exp-prod Integrate by parts, smart way Do not manipulate iterated integrals and iterated Lie brackets of vector fields by hand – work on level of “words” (their indices) � I ∈{ a , b } ∗ I ⊗ I = 1 ⊗ 1 = 1 ⊗ 1 + a ⊗ a + a ⊗ a + b ⊗ b + b ⊗ b + 1 + 1 aa ⊗ aa aa ⊗ aa 2 2 + 1 + 1 ab ⊗ ab ab ⊗ ( ab − ba ) 2 2 + 1 + 1 ba ⊗ ba ( ab + ba ) ⊗ ba 2 2 + 1 + 1 bb ⊗ bb bb ⊗ bb 2 2 + 1 + 1 aaa ⊗ aaa aaa ⊗ aaa 6 6 + + . . . . . .

  8. Intro Controllability Series expansions Exp-prod Drop everything except the indices - maps • The iterated integral � t � t 1 � t n − 1 Υ i 1 i 2 ... i n = · · · u i 1 ( t 1 ) u i 2 ( t 2 ) · · · u i n ( t n ) dt n dt n − 1 · · · dt 1 0 0 0 is uniquely identified by the multi-index (“word”) i 1 i 2 . . . i n • The n -th order partial differential operator f i n ◦ f i n − 1 ◦ . . . f i 1 is uniquely identified by the multi-index (“word”) i 1 i 2 . . . i n • The Chen series is identified with the identity map on free associative algebra A ( Z ) over set of indices Z = { 1 , . . . m } � � ∈ ˆ CF ∼ Id A ( Z ) = w ⊗ w A ( Z ) ⊗ A ( Z ) w ∈ Z n n ≥ 0 with shuffle product on left and concatenation on right

  9. Intro Controllability Series expansions Exp-prod Recall: definition of the shuffle Combinatorially: for words w , z ∈ Z ∗ and letters a , b ∈ Z ( w a ) X ( z b ) = (( w a ) X z ) b + ( w X ( z b )) a ( ab ) X ( cd ) = a b c d + a c b d + c a b d + Example: a c d b + c a d b + c d a b Algebraically: transpose of the coproduct ∆ < v X w , z > = < v ⊗ w , ∆( z ) > where ∆: A ( Z ) �→ A ( Z ) ⊗ A ( Z ) by ∆( a ) = 1 ⊗ a + a ⊗ 1 for a ∈ Z

  10. Intro Controllability Series expansions Exp-prod Shuffles and simplices On permutations algebras Duchamp and Agrachev consider partially commutative and noncommutative shuffles. Illustration: ✻ ✻ ✻ � � � � � � � � σ 12 � � � � σ 2 σ 1 x 2 = ∪ σ 21 � � � � � ✲ � � ✲ � ✲ σ 1 In the case of three letters { 1 , 2 , 3 } = ∪ ∪ = ∪ ∪ σ ( 12 ) x 3 σ 312 σ 132 E.g. σ ( 12 ) x 3 = { t : 0 ≤ t 1 ≤ t 2 ≤ 1 , 0 ≤ t 3 ≤ 1 } For multiplicative integrands f ( x , y , z ) = f 1 ( x ) · f 2 ( y ) · f 3 ( z ) (using x y z , instead of t t t for better readability):

  11. Intro Controllability Series expansions Exp-prod Homomorphisms I • For fixed smooth vector fields f i F : A ( Z ) �→ partial diff operators on C ∞ ( M ) F : ( i 1 i 2 . . . i n ) �→ f i 1 ◦ f i 2 ◦ . . . f i n associative algebras: concatenation �→ composition • For fixed control u ∈ U Z Υ( u ): A ( Z ) �→ AC ([ 0 , T ] , R ) � T � t 1 � t p − 1 Υ( u ): ( i 1 i 2 . . . i n ) �→ · · · u i p ( t p ) . . . u i 1 ( t 1 ) dt 1 . . . dt p 0 0 0 associative algebras (Ree’s theorem): shuffle of words �→ pointwise multiplication of functions

  12. Intro Controllability Series expansions Exp-prod CF-coefficients satisfy shuffle-relations Sketch of proof (by induction on the combined lengths of the coefficients) Υ 1 ( t , u ) ≡ 1 Υ a x 1 ( t , u ) Υ a ( t , u ) = Υ a ( t , u ) · 1 = Υ a ( t , u ) · Υ 1 ( t , u ) = for any letter a ∈ X

  13. Intro Controllability Series expansions Exp-prod Induction step Υ ( wa ) x ( zb ) ( T , u ) = = Υ (( wa ) x z ) b +( w x ( zb )) a ( T , u ) = Υ (( wa ) x z ) b ( T , u ) + Υ ( w x ( zb )) a ( T , u ) � T � T = 0 Υ ( wa ) x z ( t , u ) · u b ( t ) dt + 0 Υ w x ( zb ) ( t , u ) · u a ( t ) dt � T = 0 (Υ wa ( t , u ) · Υ z ( t , u ) · u b ( t ) + Υ w ( t , u ) · Υ zb ( t , u ) · u a ( t )) dt � T � � Υ wa ( t , u ) · d dt Υ zb ( t , u ) + d = dt (Υ wa ( t , u )) · Υ zb ( t , u ) dt 0 = Υ wa ( T , u ) · Υ zb ( T , u )

  14. Intro Controllability Series expansions Exp-prod Homomorphisms II • Restriction is Lie algebra homomorphism F : L ( Z ) ⊆ A ( Z ) �→ Γ ∞ ( M ) (vector fields) • Do not fix controls: iterated integral functionals Υ: ∈ A ( Z ) �→ IIF ( U Z ) � � � T � t 1 � t p − 1 Υ: ( i 1 i 2 . . . i n ) �→ u �→ · · · u i p ( t p ) . . . u i 1 ( t 1 ) dt 1 . . . dt p 0 0 0 associative algebras: shuffle of words �→ pointwise multiplication of iterated integral functionals • Much better: Theorem: If U = L 1 ([ 0 , T ] , [ − 1 , 1 ]) then Υ: ( A ( Z ) , ∗ ) �→ IIF ( U Z ) is a Zinbiel algebra isomorphism.

  15. Intro Controllability Series expansions Exp-prod Zinbiel product and algebra Abstractly, right Zinbiel identity U ∗ ( V ∗ W ) = ( U ∗ V ) ∗ W + ( V ∗ U ) ∗ W Concrete examples in control: X n ∗ X m = n + m X n + m m • polynomials X n ⋆ X m = 1 n X n + m and � t 0 U ( s ) V ′ ( s ) ds • AC ([ 0 , ∞ )) : ( U ∗ V )( t ) = � t and ( U ⋆ V )( t ) = 0 U ( s ) ds V ( t ) • iterated integrals functionals • subsets, e.g. exponentials e imt ∗ e int = e imt ⋆ e int = 1 n + m e i ( m + n ) t m m e i ( m + n ) t and

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend