mak aking g next xt gen ener eration tion biofuel fuel sy
play

Mak aking g Next xt Gen ener eration tion Biofuel fuel Sy - PowerPoint PPT Presentation

Mak aking g Next xt Gen ener eration tion Biofuel fuel Sy Syst stem ems W s Work Richar ard d Sayr yre Scient ntif ific ic Directo ctor, , Center er for Advanced nced Biofue uel l Systems stems (DOE-EF EFRC)


  1. Mak aking g Next xt Gen ener eration tion Biofuel fuel Sy Syst stem ems W s Work Richar ard d Sayr yre • Scient ntif ific ic Directo ctor, , Center er for Advanced nced Biofue uel l Systems stems (DOE-EF EFRC) • Scient ntif ific ic Directo ctor, , National ional Alliance ance for Advan anced ced Biofue uels ls and Bioprodu ducts cts (DOE Algal al Biomass mass Program) am) • Co Co-Invest estigato tor r Photo tosyn synth theti etic c Antennae ennae Resear earch h Center r (DOE-EFR EFRC)

  2. Wh What t en ener ergy gy sou ources ces ar are e th the e mo most t ef efficient icient an and mo most t sus ustaina tainable? le? Fuel Energy gy Return urn Carbon bon Effici icienc ency y Index on Investment estment (g CO 2 /megaJoule) (best st to worst) st) Hydr droele oelectri ctric 30 30-100 100 - Shale le Gas 68 68 53 53 Coal 60 60 105 105 Cell llulosic ulosic Ethanol nol 6-36 36 20 20 Petroleum oleum 30 30-40 40 96 96 Wind nd 20 20-40 40 - So Solar ar PV PV 10 10-35 35 - Algal al biocr crude ude 10 10 - Sugar arcane cane Ethan anol ol 6-10 10 20 20 Food 2.7 2.7-5 - Biodi dies esel el 2.5 2.5 17 17-40 40 Corn Ethanol anol 0.8 0.8-1.7 1.7 34 34-80 80 Energy 52 (2013): 210 – 221

  3. Bio iofue uels; ls; an n alt lterna ernativ tive e to o li liqui uid d foss ossil il fuels ls Advanta antages es • Sustaina tainable le, , not extractiv ctive • Reduce duced d CO 2 and S emissions sions • Ener ergy gy independence pendence • Decen centr traliz alized ed ener ergy gy econo onomy my • Oi Oil-based based feedstoc dstocks availa ilable le Co Const straints: aints: • Low w solar ar ener ergy gy density sity • Potent ential ial compe petition tition with th food d • Techno hnological logical hurdles dles Producti duction on systems ems must t be • optimiz imized ed for each h site; e; high h capex Harvests ests often ten seas asonal, onal, not t • contin ntinuou uous

  4. Bio iocr crude ude, , a su sust staina inable le replac placement ement for or pe petroleum oleum About half of the products produced from oil have no alternative replacements other than oil-based feedstocks Advanta antages es of biocr crude ude based sed fuels els • Oil has 2X the energy density of alcohol. • Oil has 50X the energy density of the best batteries • Oil-based feedstocks are compatible with existing refinery, fuel distribution, and engine infrastructure • Reduced sulfur and particulate emissions

  5. Bio iofuels uels are e contrib tributi uting ng (~25%) ~25%) to o reducti ductions ons in in US US greenhous eenhouse e gas s emis issi sions ons Tota tal l US S gree eenhous nhouse e gas as em emissions ons dropp pped ed 16 16% bet etween een 20 2000 00 an and 20 2009 09

  6. Imp mprovin roving g sus ustainable tainable bio iocru crude de pro roduction duction Next-Gen Bioenergy Systems • Greater energy-return-on-investment • Reduced greenhouse gas emissions per unit energy generated (gCO 2 /mJ) • Reduced resource (land, water, and nutrient) requirements • Reduced competition for food • Compatible with existing liquid fuel refining, distribution, and combustion infra-structure Eldorado ado Biofuel uels s algal facility in Jal, NM. Utilizes “produced” water from oil wells. • Scalable production systems • Achieve economic parity with petroleum-based fuels

  7. Next xt-gen en bio iofuels uels: : Oi Oils ls from om mi microalg oalgae ae Rapi pid d growth owth rate e (2-10 (2 10 X fast aster er than terrestrial estrial plants) nts) Unlik ike e plants nts, all cells ls are photosyn tosyntheti thetic 4-50% High h photosy tosynthetic nthetic effici icienc ency (CCM) M) Oil ils Double le biomass mass in 6-12 12 hours s High gh oil l conte tent nt 4-50% 50% non-pola polar r lipid ids All l biomass mass harvested ested 100% 100% Harvest est inter erval al 24/7; 7; not season asonall ally, , so reduce duces s risk sk Susta Su taina inable le 50-90% 50 Captur ture e CO 2 in ponds ds as bicar arbona onate te Oth ther bio iomass Use waste ste water ter and nutrie rients nts No direct ect competi etition tion with th food od

  8. Rela lativ tive e land d area ea for biof ofuel uel feedstoc dstocks requir quired d to displace place US gasoli oline ne demand and (2006 006) Renewable and Sustainable Energy Reviews 14 (2010) 217-232

  9. Nati tional onal Alliance ance for Advanc anced ed Biofuel fuels s an and Biopr oproducts oducts (2010 (2010-2013) 2013) Develo lop p cost-ef effecti tive e produc oductio tion n of algal l biomass omass  and lipi pids ds  Algal al Biol ology gy - Increase overall productivity of algal biomass accumulation and lipid/hydrocarbon content  Culti tivati tion on - Increase overall productivity by optimizing sustainable cultivation and production systems  Harvestin sting/ g/Extr Extrac action tion - Develop cost-effective and energy efficient harvesting and lipid extraction technologies Develo lop p econo nomical ically ly viable le fuels ls and co-pr produ ducts cts   Fuel el Conver ersio sion n – Develop technologies to convert lipids/hydrocarbons and biomass residues into useful fuels  Valu luable le Co-pr prod oducts ts - Develop a set of valuable coproducts to add profitability and provide flexibility to allow responsiveness to changing demands/opportunities in the market  Provi vide de a frame mework for r a sustain tainable algal l biof ofuel uels s industr dustry  Sustain tainabi bility ity Analy lysis sis – Quantitatively assess the energy, environment, economic viability (LCA) and sustainability of the NAABB approaches to guide our strategy

  10. Mo Mode deli ling ng Alg lgal l Farm rm Ec Econ onomics omics James Richardson, TAMU Myriah Johnson , TAMU Meghan Downes, NMSU (12,125 acres; 10 inches deep) Source: Extrapolated from NREL harmonization report 2012

  11. NAABB sustainability analysis scenarios: roadmap for the future Open Pond Centrifuge Wet solvent extraction WT vs GMO Electroflocculation ARID raceway Hydrothermal liquefaction/ Catalytic hydrogen gasification

  12. Two stage hydrothermal liquefaction (HTL) and catalytic hydrogen gasification (CHG) of algal biomass; 85% recovery of total carbon as fuel. Biocrude is compatible with existing refinery and combustion processes Algae: protein (9-60%), carbohydrate (5-60%), lipid (2-60%) 160-300 o C 300 bars Pond Biocrude + CH 4 H 2 O and CHG nutrients Biocr crude ude compos positi ition on: alkanes, fatty acids, cyclic aromaticss, ketones

  13. HTL L ene nergy gy con onver ersion sion efficienc iciency; y; En Energy gy reco covery ery from om dif iffer eren ent t feed eed stoc ocks Material terial Oi Oil Protein tein Carb rboh ohydr drate te Ener ergy gy % % % Reco covery ery in Biocr ocrude ude % Plant nt Oi Oil 100 100 - - 87 87 Protein tein - 100 100 - 30 30 Star arch - - 100 100 14 14 Nanoc nochlor hloropsis opsis 32 32 (6.4X) 57 57 8 66 66 (1.30) X) 0) Chlor orella ella 25 25 (5X) 55 55 9 54 54 (1.06) 6) Porphyrid phyridium ium 8 8 (1.6X) 43 43 40 40 52 (1.02) 52 6X) 2) Spirulina ulina 5 5 (1X) 65 65 20 20 51 51 (1) (1) Bioresource Technol. (2011) 102: 215

  14. Modeling eling al algal al biofue fuels ls sy syst stem ems; s; bas ase e (c (current) ent) an and bes est-cas case e sce cenar ario io Scenario nario Base se Best st Case Biology ology Generic GMO (3x) Cultiv tivation tion Open Pond Arid Raceway Harvesting esting Centrifuge Electrocoagulation Ex Extrac action tion Wet Solvent HTL-CHG Nutrie rient nt No Yes Recycli ling ng Bioma mass ss 120,000 380,000 Product duction ion (Tons ns/yr yr) Crude de Oil 4,700,000 52,000,000 Product duction ion (gall llons/ ons/yr yr) Product ducts Oil and delipidated Oil and methane algae 4,000 ha farm Location tion Pecos, TX Tucson, AZ Total al cost/g t/gall allon on $230 - 16 $ 4.90 – 3.60

  15. NAABB life cycle analyses indicate that enhancing biomass productivity is required for profitable biofuel production from algae What aspec pects ts of biomass ass produc uctivity tivity shou ould d we focus us our efforts ts on to achie hieve e the greate test t yields? lds? 15

  16. Improving ing biomas mass productio duction ef efficie icienc ncy What t sh should uld be e th the e ta targets? ets? Maximum Light ght captur ture theoretical 55% losses efficiency for photosynthesis (red photons to glucose) is ~30% Energy gy EROI for conver ersi sion on carbohydrate 30-40% losses production is 10% -20% greater than for oil Energy gy synthesis accum umulati tion on (sink) nk) 4-6% gain Zhu et al., (2010) Annual Review of Plant Biology , 61: 235-261; Subramanian et al., (2013) Biotechnol. Biofuels 6:150-162

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend