magnetically generated currents in the qgp
play

Magnetically generated currents in the QGP Umut Grsoy Utrecht - PowerPoint PPT Presentation

Magnetically generated currents in the QGP Umut Grsoy Utrecht University Oxford University, 29.5.2014 arXiv:1401.3805 with D. Kharzeev and K. Rajagopal arXiv:1212.3894 with I. Iatrakis, E. Kiritsis, F. Nitti, A. O Bannon Magnetically


  1. Magnetically generated currents in the QGP Umut Gürsoy Utrecht University Oxford University, 29.5.2014 arXiv:1401.3805 with D. Kharzeev and K. Rajagopal arXiv:1212.3894 with I. Iatrakis, E. Kiritsis, F. Nitti, A. O’ Bannon Magnetically generated currents in the QGP – p.1

  2. QCD under external magnetic fields e /e for eB ≈ 10 13 G. • Schwinger pair production if F > m 2 • Magnetic catalysis: B (de)catalyzes � ¯ qq � , T c ( B ) is complicated Bali et al ’12 • rho-meson condensation ⇒ superconducting QCD vacuum! Chernodub ’10 • Changes in the phase diagram in µ − T − B Magnetically generated currents in the QGP – p.2

  3. QCD under external magnetic fields e /e for eB ≈ 10 13 G. • Schwinger pair production if F > m 2 • Magnetic catalysis: B (de)catalyzes � ¯ qq � , T c ( B ) is complicated Bali et al ’12 • rho-meson condensation ⇒ superconducting QCD vacuum! Chernodub ’10 • Changes in the phase diagram in µ − T − B This talk: Electric currents in QGP generated by magnetic fields • Chiral anomaly Kharzeev, McLerran, Warringa ’07 • Faraday + Hall in expanding plasmas U.G, Kharzeev, Rajagopal ’14 Magnetically generated currents in the QGP – p.2

  4. Heavy ion collisions and magnetic fields • Initial magnitude of B B • Bio-Savart: B 0 ∼ γZe b R 3 ⇒ ∼ 10 18 (10 19 ) G at RHIC (LHC). • B 0 ∼ 10 10 − 10 13 G (neutron stars), 10 15 (magnetars) • More relevantly eB ≈ 5 − 15 × m 2 π RHIC (LHC). Magnetically generated currents in the QGP – p.3

  5. PART I: Chiral Magnetic Current Magnetically generated currents in the QGP – p.4

  6. Chiral Anomaly in QCD Magnetically generated currents in the QGP – p.5

  7. Chiral Anomaly in QCD • massless fermions are chiral: left and right-handed quarks. • Classically QGP chiral symmetric: N L = N R as T ≈ 500 MeV ≫ m u , m d • Axial current ∂ µ J µ 5 = ∂ µ � ¯ ψγ µ ψ � L − � ¯ ψγ µ ψ � R � � = 0 N f g 2 • However there is a QM anomaly: ∂ µ j µ 5 = − F µν µν ˜ a . 16 π 2 F a Magnetically generated currents in the QGP – p.5

  8. Chiral Anomaly in QCD • massless fermions are chiral: left and right-handed quarks. • Classically QGP chiral symmetric: N L = N R as T ≈ 500 MeV ≫ m u , m d • Axial current ∂ µ J µ 5 = ∂ µ � ¯ ψγ µ ψ � L − � ¯ ψγ µ ψ � R � � = 0 N f g 2 • However there is a QM anomaly: ∂ µ j µ 5 = − F µν µν ˜ a . 16 π 2 F a • Due to topologically non-trivial gluon configurations g 2 F µν µν ˜ d 4 x F a � • Gluon winding number: Q w = ∈ Z . a 32 π 2 • Atiyah-Singer index theorem: ∆( N L − N R ) = 2 N f Q w Magnetically generated currents in the QGP – p.5

  9. How to produce Q w in QGP? E Sphaleron Topologically non-trivial gluon fields Caloron Instanton Qw -1 1 -2 0 2 • Sphalerons: thermally induced changes in Q w • The most dominant Q w decay Moore et al ’97 due to sphalerons • Sphaleron decay rate: d ( N L − N R ) ≈ 192 . 8 α 5 s T 4 dtd 3 x Magnetically generated currents in the QGP – p.6

  10. Chiral Magnetic Current Magnetically generated currents in the QGP – p.7

  11. Chiral Magnetic Current s · � • Under B spin degeneracy of quarks lifted due H ∼ − q� B : Magnetically generated currents in the QGP – p.7

  12. Chiral Magnetic Current s · � • Under B spin degeneracy of quarks lifted due H ∼ − q� B : • Macroscopic manifestation of the axial anomaly • Anomalous magnetohydrodynamics: � 2 π 2 µ 5 � e 2 J = B Kharzeev et al ’07, Son, Surowka ’09 • µ 5 encodes the imbalance N L � = N R Magnetically generated currents in the QGP – p.7

  13. • If Q w � = 0 ( or µ 5 finite ) • If there is an external magnetic field • There exists J µ ∝ B due to chiral anomaly • In QGP the main source of Q w is sphalerons • Sphaleron decay rate: d ( N L − N R ) ≈ 192 . 8 α 5 s T 4 dtd 3 x Magnetically generated currents in the QGP – p.8

  14. • If Q w � = 0 ( or µ 5 finite ) • If there is an external magnetic field • There exists J µ ∝ B due to chiral anomaly • In QGP the main source of Q w is sphalerons • Sphaleron decay rate: d ( N L − N R ) ≈ 192 . 8 α 5 s T 4 dtd 3 x • But QGP is strongly interacting... Why trust perturbative calculations? Magnetically generated currents in the QGP – p.8

  15. Holographic calculation UV IR Horizon Finite T, N c ≫ 1 , α s ≫ 1 QFT ⇔ GR on black holes in 5D T QFT r Maldacena ’97; Witten; Gubser, Klebanov, Polyakov ’98 1. �O ( x 1 ) O ( x 2 ) � computed from ˆ ∇ 2 φ = m 2 φ on the BH. Magnetically generated currents in the QGP – p.9

  16. Holographic calculation UV IR Horizon Finite T, N c ≫ 1 , α s ≫ 1 QFT ⇔ GR on black holes in 5D T QFT r Maldacena ’97; Witten; Gubser, Klebanov, Polyakov ’98 1. �O ( x 1 ) O ( x 2 ) � computed from ˆ ∇ 2 φ = m 2 φ on the BH. 2. Recall ωJ µ 5 ( ω ) ∝ Tr F ˜ F ( ω ) . Introduce CP odd axion a ( r, x ) d 4 xa 0 ( x )Tr F ˜ 3. The source term � F ( x ) with a ( r, x ) → a 0 ( x ) at the boundary. Magnetically generated currents in the QGP – p.9

  17. Holographic calculation of ∆( N L − N R ) • Initial excess N 5 ≡ N L − N R near thermal equilibrium. • Described by perturbation L → L + ǫ Tr F ˜ F dt N 5 → ωJ 05 ∝ � Tr F ˜ F Tr F ˜ • Linear response theory: d F ( ω ) � N 5 • Should calculate the decay rate Γ CS ∼ � Tr F ˜ F Tr F ˜ F ( ω ) � • Holography: Study ˆ ∇ 2 a ( r, x ) = 0 on the 5D BH. Magnetically generated currents in the QGP – p.10

  18. Holographic calculation of ∆( N L − N R ) Magnetically generated currents in the QGP – p.11

  19. Holographic calculation of ∆( N L − N R ) AdS/CFT: Γ CS = ( g 2 N c ) 2 256 π 3 T 4 , Son, Starinets ’02 Magnetically generated currents in the QGP – p.11

  20. Holographic calculation of ∆( N L − N R ) AdS/CFT: Γ CS = ( g 2 N c ) 2 256 π 3 T 4 , Son, Starinets ’02 Phenomenologically interesting region T ≈ T c where conformality breaks down: Trace of the energy-momentum tensor 1.8 1.6 SU(3) 4 SU(4) 4 , normalized to the SB limit of p / T 1.4 SU(5) SU(6) SU(8) 1.2 improved holographic QCD model 1 0.8 0.6 ∆ / T 0.4 0.2 0 0.5 1 1.5 2 2.5 3 3.5 T / T c Magnetically generated currents in the QGP – p.11

  21. Improved holographic QCD U.G., Nitti, Kiritsis ’07 d 5 x √− g � c Z (Φ)( ∂α ) 2 � R − ( ∂ Φ) 2 + V (Φ) − S GR 1 c = � • M 3 p N 2 2 N 2 1 + c 1 λ + c 4 λ 4 � � • Parametrize Z ( λ ) = Z 0 • Result: Γ CS ( T c ) ≥ C s ( T c ) T c χ O’Bannon, U.G, Iatrakis, Kiritsis, Nitti ’12 • where χ = ∂ 2 ǫ ( θ ) is the topological susceptibility ∂θ 2 � CS �� Κ 2 Z 0 � 2 Π � � s T � N c 2 � 2.0 1.5 1.0 0.5 T � T c 1 2 3 4 5 6 7 for ihQCD to reproduce lattice 0 + − glueball spectrum within 1 σ . Magnetically generated currents in the QGP – p.12

  22. Summary - part I • Calculated the Γ CS in non-conformal holography • CME is proportional to Γ CS • Comparison of AdS/CFT with non-AdS/non-CFT at T c : Γ CFT ≈ 0 . 045 T 4 c vs. Γ CS > 1 . 64 T 4 c CS • Precise value at T c ambiguous but a lower limit exists. √ Γ CS • Linear response ⇒ µ 5 ∝ V 3 χ • “Realistic” holography in favor of the chiral magnetic effect in HICs Magnetically generated currents in the QGP – p.13

  23. Summary - part I • Calculated the Γ CS in non-conformal holography • CME is proportional to Γ CS • Comparison of AdS/CFT with non-AdS/non-CFT at T c : Γ CFT ≈ 0 . 045 T 4 c vs. Γ CS > 1 . 64 T 4 c CS • Precise value at T c ambiguous but a lower limit exists. √ Γ CS • Linear response ⇒ µ 5 ∝ V 3 χ • “Realistic” holography in favor of the chiral magnetic effect in HICs Outlook: • To fix the ambiguity, determine Z ( φ ) ⇒ compare Tr F ∧ F Euclidean correlators with lattice • Determine Γ CS ( B, T ) • What is µ 5 if generated far from equilibrium? Magnetically generated currents in the QGP – p.13

  24. PART II: Faraday + Hall currents ongoing work with D. Kharzeev and K. Rajagopal Magnetically generated currents in the QGP – p.14

  25. “Classical” currents in charged and expanding medium: E F = − ∂ � • Faraday currents � J F ∼ σ � E F with ∇ × � B ∂t • Hall currents � J H ∼ σ � E H with � u × � E H = � B • Also a “quantum” current � J CME ∼ µ 5 � B considered in part I. Magnetically generated currents in the QGP – p.15

  26. Calculating the magnetic field in HICs • Maxwell with a point-like moving source source: � � ∇ 2 � t � B − σ∂ t � x ⊥ − � B − ∂ 2 x ′⊥ ) B = − eβ ∇ × zδ ( z − βt ) δ ( � ˆ • Integrate over participant and spectator distributions: • Simplifying assumption hard-sphere distribution for spectators and participants • For participants empirical distribution over Y: Kharzeev et al. 2007 f ( Y b ) = (4 sinh( Y 0 / 2)) − 1 e Y b / 2 , − Y 0 ≤ Y b ≤ Y 0 Magnetically generated currents in the QGP – p.16

  27. Time profile of B at LHC • with σ = 0 . 023 fm − 1 and with σ = 0 : Magnetically generated currents in the QGP – p.17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend