magma ocean solidification and formation of a candidate
play

Magma Ocean Solidification and Formation of a Candidate Terrestrial - PowerPoint PPT Presentation

Magma Ocean Solidification and Formation of a Candidate Terrestrial D Layer Alessondra Springmann April 20, 2011 1 Roadmap Background Methods Results Discussion 2 3 4 142 Neodymium 142 Nd 144 Nd


  1. Magma Ocean Solidification and Formation of a Candidate Terrestrial D” Layer Alessondra Springmann April 20, 2011 1

  2. Roadmap • Background • Methods • Results • Discussion 2

  3. 3

  4. 4

  5. µ 142 Neodymium � 142 Nd �   144 Nd sample µ 142 Nd = − 1  × 1 , 000 , 000   � 142 Nd �  144 Nd standard 5

  6. EER prediction: chondrite terrestrial µ 142 Nd = -54 µ 142 Nd = -18 µ 142 Nd = 0 Carlson & Boyet (2008) 6

  7. 6,378 km 3,488 km D” Layer 0 km Adapted from Beatty et al. (1999), p. 114 7

  8. Measuring the D” Lay et al. (1998) 8

  9. perovskite structure post-perovskite structure 9

  10. Roadmap • Background • Methods • Results • Discussion 10

  11. Model • Elkins-Tanton 2008 Model • Assume a whole-mantle magma ocean • Mineral stability • Tracks solidified assemblage, co-evolving liquid composition 11

  12. Mineral Stability by Depth !"#$#%&'()* +"#%!,-.!/&%&'0(* D !.12!,-.!/&%&'0)* B 6 < C 7'E3. ,"34#!+"35&'(* B6<C) 7 !"#$#%&'()*6'+"#%!,-.!/&%&'0)* 0A( B6<<) !"#$#%&'()* !.12!,-.!/&%&'0)* 43.%&1'7)* +"#%!,-.!/&%&'0(* !.12!,-.!/&%&'0)* B67)) 7( 5,#%&"'(* B6))) 7D (6>)) 00 ! 8!"#$#%&'9)* :3;!.#1&'<(* +"#%!,-.!/&%&'0(* ,&.!$5=#1&'>(* " 8!"#$#%&'9(* :34%&5#!?@51#1&'(* :3;!.#1&'((* ,!518,&.!$5=#1&'7))* 96<0) 7)) <69>) 7C) +!.& ' radius F=:G p .&55@.&'FHI3G ) 12

  13. Mineral Stability by Depth !"#$#%&'()* !"#$#%&'()* +"#%!,-.!/&%&'0(* +"#%!,-.!/&%&'0(* !.12!,-.!/&%&'0)* !.12!,-.!/&%&'0)* B 6 < < C C D D B 6 7'E3. 7'E3. ,"34#!+"35&'(* ,"34#!+"35&'(* B B 6 6 < < C C ) ) 7 7 !"#$#%&'()*6'+"#%!,-.!/&%&'0)* !"#$#%&'()*6'+"#%!,-.!/&%&'0)* 0A( 0A( B6<<) B6<<) !"#$#%&'()* !"#$#%&'()* !.12!,-.!/&%&'0)* !.12!,-.!/&%&'0)* 43.%&1'7)* +"#%!,-.!/&%&'0(* +"#%!,-.!/&%&'0(* 43.%&1'7)* !.12!,-.!/&%&'0)* !.12!,-.!/&%&'0)* B67)) B67)) 7( 7( 5,#%&"'(* 5,#%&"'(* B6))) B6))) 7D 7D (6>)) (6>)) 00 00 ! 8!"#$#%&'9)* ! 8!"#$#%&'9)* :3;!.#1&'<(* :3;!.#1&'<(* +"#%!,-.!/&%&'0(* +"#%!,-.!/&%&'0(* ,&.!$5=#1&'>(* ,&.!$5=#1&'>(* " 8!"#$#%&'9(* " 8!"#$#%&'9(* :34%&5#!?@51#1&'(* :34%&5#!?@51#1&'(* :3;!.#1&'((* :3;!.#1&'((* ,!518,&.!$5=#1&'7))* ,!518,&.!$5=#1&'7))* 96<0) 96<0) 7)) 7)) <69>) <69>) 7C) 7C) +!.& 13

  14. Solidification • Magnesium fractionates preferentially out of the melt into solid assemblages • Melt becomes enriched in iron • Happens rapidly • ~10 4 years 14

  15. 6500 pre-overturn density high density 6000 5500 radius (km) 5000 4500 4000 low density 3500 3000 2600 2800 3000 3200 3400 3600 3800 4000 density (kg/m3) 15

  16. Overturn • Unstable density profile • Overturn via Rayleigh-Taylor instabilities • ~ 2-4 x 10 6 years 16

  17. 6500 pre-overturn density 6000 5500 post-overturn density radius (km) 5000 4500 4000 3500 3000 2600 2800 3000 3200 3400 3600 3800 4000 density (kg/m3) Overturn results in material sorted by density 17

  18. Roadmap • Background • Methods • Results • Discussion 18

  19. 6500 pre-overturn density 6000 5500 post-overturn density radius (km) 5000 4500 4000 depth of the deep dense layer 3500 3000 2600 2800 3000 3200 3400 3600 3800 4000 density (kg/m3) Deep dense layer: 250 km thick 19

  20. 180 � T = 5000 K 160 change in density (kg/m 3 ) 140 120 100 � T = 2500 K 80 60 � T = 1000 K 40 20 � T = 100 K 0 3300 3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 initial density (kg/m 3 ) Deep dense layer is stable against thermal expansion 20

  21. EER prediction: chondrite terrestrial µ 142 Nd = -54 µ 142 Nd = -18 µ 142 Nd = 0 Carlson & Boyet (2008) 21

  22. � 142 Nd �   144 Nd sample µ 142 Nd = − 1  × 1 , 000 , 000   � 142 Nd �  144 Nd standard 80 0.45 Sm partition coefficient in MgFe-perovskite 60 deep dense layer � 142 Nd (ppm) 0.4 40 0.35 0.3 20 0.25 0 0.2 − 20 0.15 0.1 − 40 0.05 − 60 − 200 0 200 400 600 800 1000 1200 mantle � 142 Nd (ppm) 22

  23. Roadmap • Background • Methods • Results • Discussion 23

  24. Candidate D” Layer • Composition • Initial composition: Hart & Zindler (1986); Anders & Grevesse (1989) • Does not match Carlson & Boyet (2008) predictions • Non-chondritic initial composition? 24

  25. Candidate D” Layer • Physical Properties • 3.24% of the mantle by mass • Dense • 250 km thick • Thermally stable • Melting in this region likely negatively buoyant (Knittle 1998) 25

  26. Future Investigations • Varying of magma ocean depths • Different mineral assemblages by depth • Varying initial composition • Non-chondritic abundances for rare- Earth elements 26

  27. Acknowledgements • L. T. Elkins-Tanton • NSF Astronomy grant to L. T. Elkins-Tanton • R. P. Binzel • R. W. Carlson 27

  28. Acknowledgements II • J. L. Elliot, J. A. Connor, S. D. Benecchi, F. E. DeMeo, S. J. Vance, A. S. Rivkin, F. Vilas, M. E. Skolnik • A. D. Wickert, M. C. Perignon, Z. J. Bailey, E. B. Holmes, M. F. Lockhart, B. A. Black, S. M. Brown, G. T. Farmer, J. Suckale 28

  29. Questions? 29

  30. t = 4.567 Ga Sm Nd ... 142 143 144 ... ... 145 146 147 ... years 8 Sm = 1.03 x 10 6 4 1 t = 0 Ga 2 t / 1 Nd Sm ... 142 143 144 ... ... 145 146 147 ... 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend