machine learning meets super resolution h n mhaskar
play

Machine learning meets super-resolution H. N. Mhaskar Claremont - PowerPoint PPT Presentation

Machine learning meets super-resolution H. N. Mhaskar Claremont Graduate University, Claremont. Inverse Problems and Machine Learning February 10, 2018 Goals The problem of super-resolution is dual of the problem of machine learning, viewed


  1. Machine learning meets super-resolution H. N. Mhaskar Claremont Graduate University, Claremont. Inverse Problems and Machine Learning February 10, 2018

  2. Goals The problem of super-resolution is dual of the problem of machine learning, viewed as function approximation. ◮ How to measure the accuracy ◮ How to ensure lower bounds ◮ Common tools Will illustrate on the (hyper-)sphere S q of R q +1 .

  3. 1. Machine learning

  4. Machine learning on S q Given data (training data) of the form D = { ( x j , y j ) } M j =1 , where x j ∈ S q , y j ∈ R , find a function x �→ � N k =1 a k G ( x · z k ) ◮ that models the data well; ◮ in particular, � N k =1 a k G ( x j · z k ) ≈ y j . Tacit assumption: There exists an underlying function f such that y j = f ( x j ) + noise.

  5. ReLU networks An ReLU network is a function of form N � x �→ a k | w k · x + b k | . k =1 ( w k , b ) · ( x , 1) w k · x + b k � ( w k | 2 + 1)( | x | 2 + 1) � Approximation on Euclidean space � approximation on sphere

  6. Notation on the sphere S q := { x = ( x 1 , . . . , x q +1 ) : � q +1 k =1 x 2 k = 1 } , ω q = Riemannian volume of S q ρ ( x , y ) = geodesic distance between x and y . Π q n = class of all spherical polynomials of degree at most n . H q ℓ = class of all homogeneous harmonic polynomials of degree ℓ , d q ℓ = the dimension of H q ℓ , { Y ℓ, k } = orthonormal basis for H q ℓ . ∆ = Negative Laplace-Beltrami operator. ∆ Y ℓ, k = ℓ ( ℓ + q − 1) Y ℓ, k = λ 2 ℓ Y ℓ, k .

  7. Notation on the sphere With p ℓ = p ( q / 2 − 1 , q / 2 − 1) (Jacobi polynomial), ℓ d q ℓ � Y ℓ, k ( x ) Y ℓ, k ( y ) = ω − 1 q − 1 p ℓ (1) p ℓ ( x · y ) . k =1 If G : [ − 1 , 1] → R , d q ∞ ℓ � ˆ � G ( x · y ) = G ( ℓ ) Y ℓ, k ( x ) Y ℓ, k ( y ) . ℓ =0 k =1 For a measure µ on S q , � µ ( ℓ, k ) = ˆ S q Y ℓ, k ( y ) d µ ( y ) .

  8. Notation on the sphere n � λ ℓ � Φ n ( t ) = ω − 1 � p ℓ (1) p ℓ ( t ) . h q − 1 n ℓ =0 � d q n ℓ � � λ ℓ � � σ n ( µ )( x ) = S q Φ n ( x · y ) d µ ( y ) = ˆ µ ( ℓ, k ) Y ℓ, k ( x ) . h n ℓ =0 k =1 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  9. Notation on the sphere Localization (Mh. 2004) If S > q and h is sufficiently smooth, n q | Φ n ( x · y ) | ≤ c ( h , s ) max(1 , ( n ρ ( x · y )) S )

  10. Polynomial approximation (Mh. 2004) E n ( f ) = min � f − P � ∞ . P ∈ Π q n W r = { f ∈ C ( S q ) : E n ( f ) = O ( n − r ) } . Theorem TFAE 1. f ∈ W r 2. � f − σ n ( f ) � = O ( n − r ) 3. � σ 2 n ( f ) − σ 2 n − 1 ( f ) � = O (2 − nr ) (Littlewood-Paley type expansion)

  11. Data-based approximation For C = { x j } ⊂ S q , D = { ( x j , y j ) } M j =1 , 1. Find N and w j ∈ R such that M � P ∈ Π q � w j P ( x j ) = S q P ( x ) d x , 2 N j =1 and M � P ∈ Π q � | w j P ( x j ) | ≤ c S q | P ( x ) | d x , 2 N . j =1 Done by least squares or least residual solutions, to ensure a good condition number. 2. M � S N ( D )( x ) = w j y j Φ N ( x · x j ) j =1

  12. Data-based approximation (Le Gia, Mh., 2008) If { x j } M j =1 are chosen uniformly from µ q , and f ∈ W r , then with high probability, � f − S N ( D ) � ∞ � M − r / (2 r + q ) . If f is locally in W r , then the results holds locally as well; i.e., accuracy in approximation adapts itself according to local smoothness.

  13. Examples f ( x , y , z ) = [0 . 01 − ( x 2 + y 2 + ( z − 1) 2 )] + + exp( x + y + z ) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 − 14 − 12 − 10 − 8 − 6 − 4 − 2 Percentages of error less than 10 x Least square, σ 63 ( h 1 ), σ 63 ( h 5 ).

  14. Examples f ( x , y , z ) = ( x − 0 . 9) 3 / 4 + ( z − 0 . 9) 3 / 4 + + 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 − 11 − 10 − 9 − 8 − 7 − 6 − 5 − 4 − 3 − 2 Percentages of error less than 10 x Least square, σ 63 ( h 1 ), σ 63 ( h 5 ).

  15. Examples East–west component of earth’s magnetic field Original data on left (Courtesy Dr. Thorsten Maier), reconstruction with σ 46 ( h 7 ) on right

  16. ZF networks Let ˆ G ( ℓ ) ∽ ℓ − β , β > q , C m a nested sequence of points with δ ( C m ) = max x ∈ S q min z ∈C m ρ ( x , z ) ∼ η ( C m ) = z 1 � = z 2 ∈C m ρ ( z 1 , z 2 ) ≥ 1 / m . min G ( C m ) = span { G ( ◦ · z ) : z ∈ C m } .

  17. ZF networks (Mh. 2010) Theorem Let 0 < r < β − q , then f ∈ W r if and only if dist( f , G ( C m )) = O ( m − r ) , Remark. The theorem gives lower limits for individual functions.

  18. One problem x j ’s may not be distributed according to µ q ; their distribution is unknown.

  19. Drusen classification ◮ AMD (Age related Macular Degeneration) is the most common cause of blindness among the elderly in the western world. ◮ AMD � RPE (Retinal Pigment Epithelium) � Drusen accumulation of different kinds Problem: Automated quantitative prediction of disease progression, based on drusen classification.

  20. Drusen classification (Ehler, Filbir, Mh., 2012) We used 24 images (400 × 400 pixels each) on each patient, at different frequencies. By preprocessing these images at each pixel, we obtained a data set consisting of 160,000 points on a sphere in a 5 dimensional Euclidean space. We used about 1600 of these as training set, and classified the drusen in 4 classes. While the current practice is based on spatial appearance, our method is based on multi–spectral information.

  21. Drusen classification

  22. 2. Super-resolution

  23. Problem statement Given observations of the form L � a m exp( − ijx m ) + noise , | j | ≤ N , m =1 determine L , a m ’s and x m ’s. Hidden periodicities (Lanczos) Direction finding (Krim, Pillai, · · · ) Singularity detection (Eckhoff, Gelb, Tadmor, Tanner, Mh., Prestin, Batenkov, · · · ) Parameter estimation (Potts, Tasche, Filbir, Mh., Prestin, · · · ) Blind source signal separation (Flandrin, Daubeschies, Wu, Chui, Mh., · · · )

  24. A simple observation If Φ N is a highly localized kernel (Mh.-Prestin, 1998), then � L m =1 a m Φ N ( x − x m ) ≈ � L m =1 a m δ x m .

  25. A simple observation Original signal: f ( t ) = cos(2 π t )+cos(2 π (0 . 96) t )+cos(2 π (0 . 92) t )+cos(2 π (0 . 9) t )+ noise

  26. A simple observation Original signal: f ( t ) = cos(2 π t )+cos(2 π (0 . 96) t )+cos(2 π (0 . 92) t )+cos(2 π (0 . 9) t )+ noise Frequencies obtained by our method (Chui, Mh., van der Walt, 2015): .

  27. Super-resolution Question How large should N be? Answer With η = min j � = k | x j − x k | , N ≥ c η − 1 . Super-resolution (Donoho, Cand´ es, Fernandez-Granda) How can we do this problem with N ≪ η − 1 ?

  28. Spherical variant Given L � k = 1 , · · · , d q a m Y ℓ, k ( x m ) + noise , ℓ , 0 ≤ ℓ ≤ N , m =1 determine L , a m , x m . Observation With µ ∗ = � L m =1 a m δ x m , L � ˆ µ ∗ ( ℓ, k ) = a m Y ℓ, k ( x m ) . m =1

  29. Super-duper-resolution Given ˆ k = 1 , · · · , d q µ ∗ ( ℓ, k ) + noise , ℓ , ℓ ≤ N , determine µ ∗ . Remark The minimal separation is 0. Any solution based on finite amount of information is beyond super-resolution.

  30. Duality � d µ N ( x ) = σ N ( µ ∗ )( x ) d x = S q Φ N ( x · y ) d µ ∗ ( y ) d x . For f ∈ C ( S q ), � � S q σ N ( f )( x ) d µ ∗ ( x ) . S q f ( x ) d µ N ( x ) = So, � � � � S q f ( x ) d ( µ N − µ ∗ )( x ) � ≤ | µ ∗ | TV E N / 2 ( f ) . � � � � Thus, µ N → µ ∗ (weak-*). Also, � � S q P ( x ) d µ ∗ ( x ) , P ∈ Π q S q P ( x ) d µ N ( x ) = N / 2 .

  31. Examples (Courtesy: D. Batenkov) Original measure (left), Fourier projection (middle), σ 64 (below left), thresholded | σ 64 | (below right).

  32. Examples (Courtesy: D. Batenkov) Original measure (left), Fourier projection (middle), σ 64 (below).

  33. Examples (Courtesy: D. Batenkov) Original measure (left), Fourier projection (middle), σ 64 (below).

  34. 3. Distance between measures

  35. Erd¨ os-Tur´ an discrepancy Erd¨ os, Tur´ an, 1940 If ν is a signed measure on T, ( ∗ ) D [ ν ] = sup | ν ([ a , b ]) | . [ a , b ] ⊂ T Analogues of (*) hard for manifolds, even sphere. Equivalently, if e ikx � G ( x ) = ik k ∈ Z \{ 0 } � � � � � ( ∗∗ ) D [ ν ] = sup G ( x − y ) d ν ( y ) � � x ∈ T � � T Generalization to multivariate case: Dick, Pillisheimer, 2010.

  36. Wasserstein metric �� � � � � � sup S q fd ν � : max x , y ∈ S q | f ( x ) − f ( y ) | ≤ 1 . � � � f Replace max x , y ∈ S q | f ( x ) − f ( y ) | ≤ 1 by � ∆( f ) � ≤ 1. Equivalent metric: � � � � � S q G ( ◦ · y ) d ν ( y ) , � � � � 1 where G is Green kernel for ∆.

  37. Measuring weak-* convergence Let G : [ − 1 , 1] → R , ˆ G ( ℓ ) > 0 for all ℓ , ˆ G ( ℓ ) ∽ ℓ − β , β > q . � � � � � D G [ ν ] = S q G ( ◦ · y ) d ν ( y ) . � � � � 1 Theorem D G [ µ N − µ ∗ ] ≤ cN − β | µ ∗ | TV . Remark The approximating measure is constructed from O ( N q ) pieces of information ˆ µ ∗ ( ℓ, k ). In terms of the amount of information, M , the rate is O ( M − β/ q ).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend