m o n t e c a r l o m e t h o d s
play

M o n t e C a r l o M e t h o d s L e c t u r e 1 Nothing Gluon - PowerPoint PPT Presentation

2 n d B i e n n i a l A f r i c a n S c h o o l o n F u n d a m e n t a l P h y s i c s a n d i t s A p p l i c a t i o n s K N U S T - K u m a s i - G h a n a M o n t e C a r l o M e t h o d s L e c t u r e 1 Nothing Gluon


  1. 2 n d B i e n n i a l A f r i c a n S c h o o l o n F u n d a m e n t a l P h y s i c s a n d i t s A p p l i c a t i o n s K N U S T - K u m a s i - G h a n a M o n t e C a r l o M e t h o d s L e c t u r e 1 “Nothing” Gluon action density: 2.4x2.4x3.6 fm (1 fm = 1 femtometer = 1 Fermi = 10 -15 m) Lattice simulation from D. B. Leinweber, hep-lat/0004025 P e t e r S k a n d s C E R N - D e p t o f T h e o r e t i c a l P h y s i c s

  2. Topics Lecture 1: Numerical Integration + This afternoon Monte Carlo methods Practical Exercises: PYTHIA 8 kickstart Importance Sampling (check the instructions) The Veto Algortihm Lecture 2: Application of these methods to simulations of particle physics: Monte Carlo Event Generators MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 2

  3. Why Integrals? LHC detector Scattering source Cosmic-Ray detector Neutrino detector Experiments ∆Ω X-ray telescope … → Integrate interaction cross sections over specific regions Predicted number of counts d Ω d σ Z N count ( ∆Ω ) ∝ = integral over solid angle d Ω ∆Ω Differential solid angle element Differential scattering cross section (~ differential scattering probability / MC interaction probability / … ) Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 3

  4. Particle Physics Example ALICE : One of the 4 experiments at the Large Hadron Collider at CERN MC More complicated integrals ... Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 4

  5. Why Numerical? Let’s look at something simpler … 14 Jun 2000: 4-jet event in ALEPH at LEP (a Higgs candidate) Now compute the backgrounds ... MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 5

  6. Why Numerical? Part of Z → 4 jets … � � 5.3 Four-parton tree-level antenna functions � 1 1 � 3 12 − 1 � a 0 2 s 12 s 2 34 − 2 s 2 12 s 34 + s 3 2 s 3 ˜ 4 (1 , 3 , 4 , 2) = 34 The tree-level four-parton quark-antiquark antenna contains three final states: quark- s 1234 s 13 s 24 s 134 s 234 4 and ˜ gluon-gluon-antiquark at leading and subleading colour, A 0 A 0 4 and quark-antiquark- 1 3 s 12 s 23 − 3 s 12 s 34 + 4 s 2 12 − s 23 s 34 + s 2 23 + s 2 � � + quark-antiquark for non-identical quark flavours B 0 4 as well as the identical-flavour-only 34 s 13 s 24 s 134 contribution C 0 4 . The quark-antiquark-quark-antiquark final state with identical quark s 3 1 � 1 � 12 2 s 12 s 14 + s 2 + s 13 s 24 ( s 13 + s 23 )( s 14 + s 24 ) + flavours is thus described by the sum of antennae for non-identical flavour and identical- 12 s 13 s 24 ( s 13 + s 23 ) This is one of the simplest processes flavour-only. The antennae for the qgg ¯ q final state are: 1 � 1 � 1 � 3 s 12 + 3 2 s 14 + 3 � 2 s 12 s 23 + s 2 + + 2 s 23 12 … computed at lowest order in the s 13 s 24 ( s 14 + s 24 ) A 0 q ) = a 0 4 (1 , 3 , 4 , 2) + a 0 s 13 s 24 4 (1 q , 3 g , 4 g , 2 ¯ 4 (2 , 4 , 3 , 1) , (5.27) 2 s 3 1 ˜ A 0 a 0 a 0 a 0 a 0 12 4 (1 q , 3 g , 4 g , 2 ¯ q ) = ˜ 4 (1 , 3 , 4 , 2) + ˜ 4 (2 , 4 , 3 , 1) + ˜ 4 (1 , 4 , 3 , 2) + ˜ 4 (2 , 3 , 4 , 1) , (5.28) + [ s 12 s 34 + s 23 s 34 + s 24 s 34 ] + theory. s 13 s 2 s 13 s 134 s 234 ( s 13 + s 23 ) 134 � 1 1 1 a 0 � 2 s 12 s 14 + 2 s 12 s 23 + 2 s 2 12 + s 2 14 + s 2 � 4 (1 , 3 , 4 , 2) = 3 s 12 s 34 − s 24 s 34 − 2 s 2 � � + 23 2 s 13 s 24 s 34 34 s 1234 s 13 s 134 s 234 1 1 s 12 s 24 + s 12 s 34 + 2 s 2 � � + � 3 s 12 s 2 34 − 4 s 2 12 s 34 + 2 s 3 12 − s 3 � + 12 34 s 13 s 134 ( s 13 + s 23 ) 2 s 13 s 24 s 134 s 234 1 1 1 3 s 12 s 23 − 3 s 12 s 34 + 4 s 2 12 − s 23 s 34 + s 2 23 + s 2 � � + Now compute and add the quantum � s 12 s 14 + s 12 s 34 + 2 s 2 � + [ − s 23 − s 24 + 2 s 34 ] + 34 12 s 13 s 24 s 134 s 13 s 134 s 13 s 234 ( s 13 + s 23 ) 3 1 1 + [2 s 12 + s 14 + s 23 ] + [4 s 12 + 3 s 23 + 2 s 24 ] corrections … + [ − 2 s 12 − 2 s 14 + s 24 + 2 s 34 ] 2 s 13 s 24 s 13 s 34 s 13 s 234 1 2 s 3 + [ s 12 s 34 + s 23 s 34 + s 24 s 34 ] 12 s 13 s 2 + 134 s 13 ( s 13 + s 23 )( s 14 + s 24 )( s 13 + s 14 ) 1 � 3 s 12 s 24 + 6 s 12 s 34 − 4 s 2 12 − 3 s 24 s 34 − s 2 24 − 3 s 2 � + 1 s 12 s 24 + 2 s 2 34 � � + s 13 s 134 s 234 12 s 13 ( s 13 + s 23 )( s 13 + s 14 ) 1 + [ − 6 s 12 − 3 s 23 − s 24 + 2 s 34 ] 1 s 12 s 23 + 2 s 2 � � + s 13 s 134 12 s 13 ( s 14 + s 24 )( s 13 + s 14 ) 1 Then maybe worry about � 2 s 12 s 14 + 2 s 12 s 23 + 2 s 2 12 + 2 s 14 s 23 + s 2 14 + s 2 � + s 13 ( s 13 + s 14 ) − 2 2 s 12 1 23 + + [ s 12 + s 23 + s 24 ] s 24 s 34 s 134 s 2 s 13 1 [ − 4 s 12 − s 14 − s 23 + s 34 ] + 1 simulating the detector too … 134 + [ s 12 + 2 s 13 − 2 s 14 − s 34 ] � s 2 1 1 s 24 s 134 34 + [ s 12 − s 34 ] + + O ( � ) . (5.30) 1 − 2 s 12 s 14 s 24 s 134 s 234 s 134 2 s 12 s 2 14 + 2 s 2 14 s 23 + 2 s 2 � � + 14 s 24 s 2 34 s 2 s 2 34 s 134 s 234 134 1 � − 2 s 12 s 14 − 4 s 14 s 24 + 2 s 2 � + 14 s 2 34 s 134 1 − 2 s 12 s 14 − 4 s 2 12 + 2 s 14 s 24 − s 2 14 − s 2 � � + 24 + Additional Subleading Terms … s 34 s 134 s 234 MC 1 1 + [ − 8 s 12 − 2 s 23 − 2 s 24 ] + [ s 12 + s 23 + s 24 ] s 2 s 34 s 134 134 Lecture � 3 1 I + [2 s 12 + s 14 − s 24 − s 34 ] + + O ( � ) (5.29) , 2 s 134 s 234 2 s 134 � � � P. S k a n d s - M o n t e C a r l o m e t h o d s 6

  7. Numerical Integration Problem: find a numerical approximation to the value of S MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 7

  8. Riemann Sums � b n � f ( x )d x = lim f ( t i )( x i +1 − x i ) n →∞ a i =1 B. Riemann, (1826-1866) MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 8

  9. Numerical Integration in 1D Fixed-Grid n-point Midpoint (rectangular) Rule: Quadrature Rules Divide into N “bins” of size ∆ Approximate f(x) ≈ constant in each bin Sum over all rectangles inside your region 1 function evaluation per bin MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 9

  10. Numerical Integration in 1D Fixed-Grid n-point Trapezoidal Rule: Quadrature Rules Approximate f(x) ≈ linear in each bin Sum over all trapeziums inside your region 2 function evaluations per bin MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 10

  11. Numerical Integration in 1D Fixed-Grid n-point Simpson’s Rule: Quadrature Rules Approximate f(x) ≈ quadratic in each bin Sum over all “Simpsons” inside your region 3 function evaluations per bin MC … and so on for higher n-point rules ... Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 11

  12. Convergence Rate The most important question: How long do I have to wait? How many evaluations do I need to calculate for a given precision? Approx Uncertainty n eval / bin Conv. Rate (after n evaluations) (in 1D) Trapezoidal Rule (2-point) 2 1/N 2 Simpson’s Rule (3-point) 3 1/N 4 … m-point (Gauss quadrature) m 1/N 2m-1 See, e.g., F. James, “Monte Carlo See, e.g., Numerical Recipes MC Theory and Practice” Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 12

  13. Higher Dimensions Fixed-Grid (Product) Rules scale exponentially with D m-point rule in 1 dimension → m function evaluations per bin 1 2 ... m … in 2 dimensions → m 2 evaluations per bin 2 ... m 2 ... … in D dimensions → m D per bin m E.g., to evaluate a 12-point rule in 10 dimensions , need 1000 billion evaluations per bin MC Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 13

  14. Convergence Rate + Convergence is slower in higher Dimensions! → More points for less precision Approx Uncertainty n eval / bin Conv. Rate (after n evaluations) (in D dim) Trapezoidal Rule (2-point) 2 D 1/n 2/D Simpson’s Rule (3-point) 3 D 1/n 4/D … m-point (Gauss rule) m D 1/n (2m-1)/D See, e.g., F. James, “Monte Carlo See, e.g., Numerical Recipes MC Theory and Practice” Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 14

  15. A Monte Carlo technique: is any technique making use of random numbers to solve a problem “This risk, that convergence is only given Convergence: with a certain probability, is inherent in Monte Carlo Generators Monte Carlo Generators Monte Carlo Monte Carlo calculations and is the reason Calculus: {A} converges to B why this technique was named after the if an n exists for which world’s most famous gambling casino. |A i>n - B| < ε , for any ε >0 Indeed, the name is doubly appropriate because the style of gambling in the Monte Monte Carlo: {A} converges Carlo casino, not to be confused with the to B if n exists for which noisy and tasteless gambling houses of Las the probability for Vegas and Reno, is serious and | A i>n - B| < ε , for any ε > 0, sophisticated.” is > P , for any P[0<P<1] F. James, “Monte Carlo theory and MC practice”, Rept. Prog. Phys. 43 (1980) 1145 Lecture I P. S k a n d s - M o n t e C a r l o m e t h o d s 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend