m c q s t motivation
play

M C Q S T Motivation Configuration space of N spin- 1 Q N = { 1 - PowerPoint PPT Presentation

Phase Transition in the Quantum Random Energy Model Simone Warzel Venice Quantissima in the Serenissima III August 23, 2019 M C Q S T Motivation Configuration space of N spin- 1 Q N = { 1 , 1 } N 2 : Random Energy Model Derrida


  1. Phase Transition in the Quantum Random Energy Model Simone Warzel Venice – Quantissima in the Serenissima III August 23, 2019 M C Q S T

  2. Motivation Configuration space of N spin- 1 Q N = {− 1 , 1 } N 2 : Random Energy Model Derrida ’80 √ U ( σ ) = N g ( σ ) , σ ∈ Q N with g ( σ ) i.i.d. standard Gaussian random variables. • Simplest extreme case in family of mean-field spin-glass models, i.e. p -spin model N � 1 p � � E [ U ( σ ) U ( σ ′ )] = N � σ j σ ′ E [ U ( σ )] = 0 , � � j N � j = 1 Special cases: p = 2 Sherrington-Kirkpatrick ’75 p = ∞ REM √ • Asymptotically almost surely max | U | = N β c + O ( 1 ) β c := 2 ln 2 with

  3. Motivation F j σ = ( σ 1 , . . . , − σ j , . . . , σ N ) Transversal magnetic field induces spin flips: N N C 2 ≡ ℓ 2 ( Q N ) � � ( T ψ ) ( σ ) = − ψ ( F j σ ) , ψ ∈ j = 1 j = 1 • Spectrum of T : − N , − N + 2 , . . . , N − 2 , N Quantum Random Energy Model H = Γ T + U with Γ ≥ 0 strength of the transversal field. • Simple model for studying quantum effects in unstructured energy landscape, e.g. in the context of: − mean-field quantum spin glasses Goldschmidt ’90, . . . − quantum annealing algorithms Jörg/Krzakala/Kurchan/Maggs ’08, . . . − many-body localized systems Laumann/Pal/Scardiccio ’14, . . . • Model for mutation of genotypes in random fitness landscape Schuster/Eigner ’77, . . . , Baake/Wagner ’01

  4. Motivation Quantum Random Energy Model H = Γ T + U with Γ ≥ 0 strength of the transversal field. • Simple model for studying quantum effects in unstructured energy landscape, e.g. in the context of: − mean-field quantum spin glasses Goldschmidt ’90, . . . − quantum annealing algorithms Jörg/Krzakala/Kurchan/Maggs ’08, . . . − many-body localized systems Laumann/Pal/Scardiccio ’14, . . . • Model for mutation of genotypes in random fitness landscape Schuster/Eigner ’77, . . . , Baake/Wagner ’01 Predicted features: I. Spin-glass transition & free-energy Manai/W.’ 19 II. Quantum phase transition in ground-state and exponential run time of adiabatic search Adame/W.’ 16 III. Localization/delocalization transitions of eigenvectors W. ≥ ’16

  5. Free energy Z ( β, Γ) := Tr e − β H Partition fuction at inverse temperature β ∈ [ 0 , ∞ ] : p N ( β, Γ) := N − 1 ln Z ( β, Γ) Pressure: • Freezing transition at β = β c for REM: Derrida ’80, . . .  β 2 β ≤ β c  2 N →∞ p N ( β, 0 ) = p REM ( β ) = lim β 2 2 + ( β − β c ) β c β > β c c  Entropy vanishes in low-temperature phase! • Self-averaging through gaussian fluctuation bounds: � � t − ct 2 � � | p N ( β, Γ) − E [ p N ( β, Γ)] | > √ ≤ C exp P N

  6. Free energy Z ( β, Γ) := Tr e − β H Partition fuction at inverse temperature β ∈ [ 0 , ∞ ] : p N ( β, Γ) := N − 1 ln Z ( β, Γ) Pressure: • Freezing transition at β = β c for REM: Derrida ’80, . . .  β 2 β ≤ β c  2 N →∞ p N ( β, 0 ) = p REM ( β ) = lim β 2 2 + ( β − β c ) β c β > β c c  Entropy vanishes in low-temperature phase! • Self-averaging through gaussian fluctuation bounds: � � t − ct 2 � � | p N ( β, Γ) − E [ p N ( β, Γ)] | > √ ≤ C exp P N Proof: McDiarmid & Lipschitz estimate � ∂ p N � 2 1 � σ | e − β H | σ � 2 ≤ 1 � � = N Z 2 ∂ g ( σ ) N σ σ For p -spin generalization see: Crawford ’07

  7. Phase diagram Replica method and static approximation in path-integral representation of E [ Z ( β, Γ) n ] Goldschmidt ’90, . . . , Obuchi/Nishimori/Sherrington ’07,. . . Theorem (Manai/W. ’19) Quantum Paramagnet N →∞ p N ( β, Γ) = max { p REM ( β ) , p PAR ( β Γ) } p PAR ( β Γ) = β 2 lim 2 + ln cosh ( β Γ) c

  8. Proof ideas Lower bounds is based on Gibb’s variational principle , i.e. Tr Ue − β Γ T p N ( β, Γ) − p PAR ( β Γ) ≥ − β β � � 1 � = − 2 N √ g ( σ ) = O √ Tr e − β Γ T N 2 N N N σ Tr Te − β U p N ( β, Γ) − p REM ( β Γ) ≥ − β Tr e − β U = 0 . N N →∞ p N ( β, Γ) ≥ max { p REM ( β ) , p PAR ( β Γ) } . lim inf Hence:

  9. Proof ideas Upper bound is based on absence of percolation of large deviation sites X ε := { σ ∈ Q N | U ( σ ) < − ε N } with ε > 0 arbitrary. Spin flips to/from X ε with Hamming distance d = 1: � � ( | σ �� σ ′ | + h . c . ) ∆ ε = − σ ∈ X ε σ ′ : d ( σ,σ )= 1 ¥ * • For every σ ∈ X ε there are at most K ε other large deviation ¥ ¥ * . sites in the ball B δ ε N centered at σ with radius δ ε N . ¥¥ ¥ � ∆ ε ≥ T Consequently: B δ N . � • Use Golden-Thomson for decomposition H = H ε + Γ∆ ε Z ( β, Γ) ≤ Tr e − β H ε e − β Γ∆ ε Z PAR ( β Γ) e β Γ ε N + Z REM ( β ) ≤ e − β Γ inf ∆ ε � � β Γ inf ∆ ε + max { p REM ( β ) , p PAR ( β Γ) + β Γ ǫ } . Hence: lim sup p N ( β, Γ) ≤ lim sup N N →∞ N →∞

  10. Confinement to Hamming ball Lemma (cf. Friedman/Tillich ’05, . . . ) For any δ ∈ ( 0 , 1 / 2 ) the Dirichlet restriction to a ball in the Hamming cube is bounded: � � � � � ≤ 2 N δ ( 1 − δ ) + o ( N ) � T � � � B δ N B δ N = A + A † with � W.l.og. center ball at σ 0 = ( 1 , 1 , . . . , 1 ) and write − T Proof: � � 1 if � σ ′ | A | σ � = 0 else � � � A † A � and Estimate � T B δ N � ≤ 2 � A � = 2 � � � = N δ × N ( 1 − δ ) + o ( N 2 ) � A † A � ≤ max � � ′ σ | A † A | σ � � � σ σ ′

  11. Summary & Outlook I. Spin glass perspective: • Proof of conjectured thermodynamic phase diagram � • Fluctuation properties of the partition function, stochastic stability, . . . ?? • Extension of qualitative properties to p -spin models ?? II. Quantum annealing & ground-state transition: � Farhi/Goldstone/Gutmann/Nagaj ’08, Adame/W. ’16. III. Localization/delocalization properties of eigenvectors: • Low-energy spectrum � • Multifractality • Delocalization of bulk states . . . ??

  12. Localization/delocalization Laumann/Pal/Scardiccio ’14 Faoro/Feigelman/Ioffe ’18 Smelyanskiy/Kechedzhi/Boixo/Neven/Altshuler ’19 Main claim: Main claim: Eigenstates are delocalized vs localized on Hammingcube Multifractality of intermediate eigenstates Similar to Rosenzweig-Porter, cf von Soosten/W. 18

  13. Low-energy spectrum of QREM Theorem ( Γ > β c ) For any ε > 0 there is N ε ∈ N , s.t. with asympt. full probability and for all N ≥ N ε , the eigenvalues E of H with E ≤ − ( β c − ε ) N are found in intervals centered at � � κ 2 Γ 2 n − N − , n ∈ { 0 , 1 , . . . } , 1 − 2 n N �� ln N � with radius O . N � N � There are exactly eigenvalues in each ball and the corresponding normalized eigenfunctions n ψ E are delocalized: xE ∞ ≤ 2 − N e Γ ( 2 ) N � ψ E � 2 where Γ( x ) := − x ln x − ( 1 − x ) ln( 1 − x ) and x E := E N Γ − min U . N

  14. Low-energy spectrum of QREM Theorem ( Γ < β c ) For any ε > 0 there is N ε ∈ N , s.t. with asympt. full probability and for all N ≥ N ε , the eigenvalues √ � � E of H with E ≤ − max(Γ , β c / 2 ) − ε N are each exponentially localized in a (single) large-deviation site.

  15. Thank You! Based on joint work with Ch. Manai.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend