m 2 s 2 2 x 2 x 2 z p
play

m 2 s 2 2 ( ( x ) / 2 x / 2 ) ( ) - PDF document

Normal Random Variable Carl Friedrich Gauss X is a Normal Random Variable : X ~ N( m , s 2 ) Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician Probability Density Function (PDF): 1 2 2


  1. Normal Random Variable Carl Friedrich Gauss • X is a Normal Random Variable : X ~ N( m , s 2 ) • Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician  Probability Density Function (PDF): 1 2 2    m s 2      ( x ) / f ( x ) e where x s  m 2  m  E [ X ] ( x ) f  s 2 ( )  Var X x • Started doing groundbreaking math as teenager  Also called “Gaussian”  Note: f(x) is symmetric about m  Did not invent Normal distribution, but popularized it • He looked more like Martin Sheen  Common for natural phenomena: heights, weights, etc.  Who is, of course, Charlie Sheen’s father  Often results from the sum of multiple variables Properties of Normal Random Variable Standard (Unit) Normal Random Variable • Let X ~ N( m , s 2 ) • Z is a Standard (or Unit) Normal RV : Z ~ N(0, 1) Var(Z) = s 2 = 1  E[Z] = m = 0 SD(Z) = s = 1 • Let Y = a X + b  Y ~ N( a m + b , a 2 s 2 )  CDF of Z, F Z ( z ) does not have closed form  E[Y] = E[ a X + b ] = a E[X] + b = a m + b  We denote F Z ( z ) as  ( z ): “phi of z”  Var(Y) = Var( a X + b ) = a 2 Var(X) = a 2 s 2 z z 1 1        m 2 s 2   2 Φ( ( x ) / 2 x / 2 ) ( ) z P Z z e dx e dx          x b  x b s   ( ) ( ) ( ) ( ) ( ) F x P Y x P aX b x P X F 2 2 Y a X a      By symmetry:  ( – z ) = P( Z ≤ – z ) = P( Z ≥ z ) = 1 –  ( z ) Differentiating F Y ( x ) w.r.t. x , yields f Y ( x ) , the PDF for y : • Use Z to compute X ~ N( m , s 2 ), where s > 0    d  d x b  x b 1 ( ) ( ) ( ) ( ) f x F x F f  m  m  m  m Y dx Y dx X a a X a    X  x   x   x ( ) ( ) ( ) ( ) ( ) F X x P X x P P Z • Special case: Z = (X – m )/ s ( a = 1/ s , b = – m / s ) s s s s  Table of  ( z ) values in textbook, p. 201 and handout  Z ~ N( a m + b , a 2 s 2 ) = N( m / s – m / s , (1/ s ) 2 s 2 ) = N(0, 1) Using Table of  (z) Values Get Your Gaussian On m = 3 s 2 = 16 s = 4 • X ~ N(3, 16)  (0.54) = 0.7054  What is P(X > 0)?   3 0 3 3   X     P ( X 0 ) P ( P ( Z ) ) 4 4 4    3   3  1 ( ) ( ) 0 . 7734 4 4  What is P(2 < X < 5)?    2 3 3 5 3 1 2     X     ( 2 5 ) (  ( P X P ) P Z ) 4 4 4 4 4              2 1 1 1 ( ) ( ) ( ) ( 1 ( )) 0 . 6915 ( 1 0 . 5987 ) 0 . 2902 4 4 2 4  What is P(|X – 3| > 6)?          3 3 9 3 ( 3 ) ( 9 ) (  (  P X P X P Z ) P Z ) 4 4   3    3    3    ( ) ( 1 ( )) 2 ( 1 ( )) 2 ( 1 0 . 9332 ) 0 . 1336 2 2 2 1

  2. Noisy Wires Normal Approximation to Binomial • Send voltage of 2 or -2 on wire (to denote 1 or 0) • X ~ Bin( n , p ) Var(X) = np (1 – p )  X = voltage sent  E[X] = np  R = voltage received = X + Y, where noise Y ~ N(0, 1)  Poisson approx. good: n large (> 20), p small (< 0.05)  For large n: X  Y ~ N(E[X], Var(X)) = N( np , np (1 – p ))  Decode R: if (R ≥ 0.5) then 1, else 0  Normal approx. good : Var(X) = np (1 – p ) ≥ 10  What is P(error after decoding | original bit = 1)?              ) P ( 2 Y 0 . 5 ) P ( Y 1 . 5 ) ( 1 . 5 ) 1 ( 1 . 5 ) 0 . 0668         0 . 5 0 . 5 k np k np 1 1               ( ) P X k P k Y k     2 2   ( 1 ) ( 1 )  np p   np p   What is P(error after decoding | original bit = 0)?           DeMoivre-Laplace Limit Theorem: ( 2 0 . 5 ) ( 2 . 5 ) 1 ( 2 . 5 ) 0 . 0062 P Y P Y o S n : number of successes (with prob. p ) in n independent trials    S np              n P a n b ( b ) ( a )    ( 1 )  np p  Comparison when n = 100, p = 0.5 Faulty Endorsements • 100 people placed on special diet  X = # people on diet whose cholesterol decreases  Doctor will endorse diet if X ≥ 65  What is P(doctor endorses diet | diet has no effect)?  X ~ Bin(100, 0.5) P(X = k )    – p) – p) 50 1 25 1 5 np np( np(  Use Normal approximation: Y ~ N(50, 25)    P ( X 65 ) P ( Y 64 . 5 )  )     Y 50  64 . 5 50     ( 64 . 5 ) 1 ( 2 . 9 ) 0 . 0019 P Y P 5 5  Using Binomial:   ( 65 ) 0 . 0018 P X k Stanford Admissions Exponential Random Variable • X is an Exponential RV : X ~ Exp( l ) Rate: l > 0 • Stanford accepts 2480 students  Each accepted student has 68% chance of attending  Probability Density Function (PDF):   X = # students who will attend. X ~ Bin(2480, 0.68) l  l  x e if x 0        ( ) where x f x  What is P(X > 1745)?   0 if x 0    – p) – p) np 1686 . 4 np( 1 539 . 65 np( 1 23 . 23 1  [ ]  E X  Use Normal approximation: Y ~ N(1686.4, 539.65) l f ( x )    P ( X 1745 ) P ( Y 1745 . 5 ) 1  ( ) Var X  )  l x 2   1686 . 4 1745 . 5 1686 . 4   Y      P ( Y 1745 . 5 ) P 1 ( 2 . 54 ) 0 . 0055 23 . 23 23 . 23  Cumulative distribution function (CDF), F (X) = P( X  x ):    l  x ( ) 1 where 0 F x e x  Using Binomial:    Represents time until some event P ( X 1745 ) 0 . 0053 o Earthquake, request to web server, end cell phone contract, etc. 2

  3. Exponential is “Memoryless” Visits to Web Site • X = time until some event occurs • Say a visitor to your web leaves after X minutes  X ~ Exp( l )  On average, visitors leave site after 5 minutes  What is P(X > s + t | X > s)?  Assume length of stay is Exponentially distributed  X ~ Exp( l = 1/5), since E[X] = 1/ l = 5      ( and ) ( ) P X s t X s P X s t      P ( X s t | X s )    What is P(X > 10)? P ( X s ) P ( X s )        l         l  10 2 ( s t ) ( 10 ) 1 ( 10 ) 1 ( 1 ) 0 . 1353 ( ) 1 ( ) P X F e e P X s t F s t e     l     t e 1 F ( t ) P ( X t )    l s P ( X s ) 1 F ( s ) e  What is P(10 < X < 20)?      So, ( | ) ( ) P X s t X s P X t         4   2  P ( 10 X 20 ) F ( 20 ) F ( 10 ) ( 1 e ) ( 1 e ) 0 . 1170  After initial period of time s , P(X > t |  ) for waiting another t units of time until event is same as at start  “Memoryless” = no impact from preceding period s Replacing Your Laptop A Little Calculus Review • X = # hours of use until your laptop dies • Product rule for derivatives:  )      On average, laptops die after 5000 hours of use d ( u v du v u dv  X ~ Exp( l = 1/5000), since E[X] = 1/ l = 5000 • Derivative and integral of exponential:  You use your laptop 5 hours/day.  ( u )  d e du u u  e du e u  What is P(your laptop lasts 4 years)? e dx dx  That is: P(X > (5)(365)(4) = 7300)           • Integration by parts: 7300 / 5000 1 . 46 P ( X 7300 ) 1 F ( 7300 ) 1 ( 1 e ) e 0 . 2322           ( ) d u v u v v du u dv  Better plan ahead... especially if you are coterming:              1 . 825 u dv u v v du P ( X 9125 ) 1 F ( 9125 ) e 0 . 1612 (5 year plan)       2 . 19 ( 10950 ) 1 ( 10950 ) 0 . 1119 (6 year plan) P X F e And Now, Some Calculus Practice • Compute n -th moment of Exponential distribution    l  l n n x E [ X ] x e dx 0  Step 1: don’t panic, think happy thoughts, recall...  Step 2: find u and v (and du and dv ):     l n x u x v e    l  l n 1 x du nx dx dv e dx  Step 3: substitute (a.k.a. “plug and chug”)        l  l        l    l 1 n x n x n x u dv x e dx u v v du x e nx e dx       l    l   n  l  l  n  n n x n 1 x n 1 x n 1 E [ X ] x e nx e dx 0 x e dx E [ X ] l l 0 1 2 1 2      0 2 Base case : E [ X ] E [ 1 ] 1 , so E [ X ] E [ X ] ,... , l l l l 2 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend