m 0 for 48 ca from charge exchange reactions
play

M 0 for 48 Ca from charge-exchange reactions Vadim Rodin DBD11, - PowerPoint PPT Presentation

M 0 for 48 Ca from charge-exchange reactions Vadim Rodin DBD11, Osaka, 16 / 11 / 2011 Introduction Nuclear 0 -decay ( = ) strong in-medium modification of the basic process dd uue e ( e e ) e - Light


  1. M 0 ν for 48 Ca from charge-exchange reactions Vadim Rodin DBD11, Osaka, 16 / 11 / 2011

  2. Introduction Nuclear 0 νββ -decay (¯ ν = ν ) strong in-medium modification of the basic process dd → uue − e − (¯ ν e ¯ ν e ) e - Light neutrino n p _ exchange mechanism ν A,Z A,Z+2 ν p n continuum e - virtual excitation 2 - of states of all multipolarities 1 - in (A,Z + 1) nucleus 1 + 0 + GT amplitudes to 1 + states 0 + (A,Z+1) — from charge-exchange reactions 0 + (A,Z) (H. Ejiri, D. Frekers, H. Sakai, R. Zegers, et al.) (A,Z+2)

  3. World status of M 0 ν , light neutrino mass mechanism (R)QRPA (Tü) | QRPA (Jy) 8 SM IBM-2 PHFB GCM+PNAMP 6 0 ν | | M | 4 | | 2 0 48 Ca 82 Se 96 Zr 100 Mo 110 Pd 124 Sn 130 Te 150 Nd 160 Gd 76 Ge 94 Zr 98 Mo 104 Ru 116 Cd 128 Te 136 Xe 154 Sm QRPA: (Tü) F. Šimkovic, A. Faessler, V.R., P. Vogel and J. Engel, PRC 77 (2008); 150 Nd, 160 Gd with deformation: D. Fang, A. Faessler, V.R., F. Šimkovic, PRC 82 (2010); PRC 83 (2011) (Jy) J. Suhonen, O. Civitarese, NPA 847 (2010) SM E. Caurier, J. Menendez, F. Nowacki, A. Poves, PRL 100 (2008) & NPA 818 (2009) IBM-2 J. Barea and F. Iachello, PRC 79 (2009); PHFB P.K. Rath et al. , PRC 82 (2010); GCM + PNAMP T. R. Rodriguez and G. Martinez-Pinedo, PRL 105 (2010)

  4. Measuring M 0 ν F Can one measure nuclear matrix elements of neutrinoless double beta decay? V.R., A. Faessler, PRC 80 , 041302(R) (2009) [arXiv:0906.1759 [nucl-th]] PPNP 66 , 441 (2011); arXiv:1012.5176 [nucl-th]

  5. j D I AS i j T T � 2 i 0 0 � ^ T j I AS i j T T � 1 i 0 0 ^ V C � + ^ ^ T T + j 0 i i j T T i 0 0 + j 0 i f j T � 2 T � 2 i 0 0

  6. Measuring M 0 ν F � ˆ b = 1 W 0 ν ˆ � T − , [ ˆ T − , ˆ � P ν ( r ab ) τ − V C ] a τ − F = e 2 ab ( 1 − τ ( 3 ) a )( 1 − τ ( 3 ) V C = e 2 C = e 2 b ) 1 b − τ a τ b Isospin lowering operator ˆ Coulomb interaction ˆ , isotensor Coulomb ˆ V ( 2 ) ( τ ( 3 ) a τ ( 3 ) T − = � � � a ; 3 ) a τ − 8 r ab 8 r ab a � b ab

  7. Measuring M 0 ν F � ˆ b = 1 W 0 ν ˆ � T − , [ ˆ T − , ˆ � P ν ( r ab ) τ − V C ] a τ − F = e 2 ab ( 1 − τ ( 3 ) a )( 1 − τ ( 3 ) V C = e 2 C = e 2 b ) 1 b − τ a τ b Isospin lowering operator ˆ Coulomb interaction ˆ , isotensor Coulomb ˆ V ( 2 ) ( τ ( 3 ) a τ ( 3 ) T − = � � � a ; 3 ) a τ − 8 r ab 8 r ab a � b ab � ˆ T − , [ ˆ T − , ˆ e 2 M 0 ν F = � 0 + � | 0 + V C ] f | i � � ˆ T − � 2 | T 0 T 0 � ≈ � T 0 − 2 T 0 − 2 | V C � ˆ T − � 2 | T 0 T 0 � = � T 0 − 2 T 0 − 2 | ˆ V C | T 0 T 0 − 2 � × � T 0 T 0 − 2 |

  8. Measuring M 0 ν F F = − 2 M 0 ν � f | ˆ s | ˆ ω s � 0 + T − | 0 + s �� 0 + T − | 0 + ¯ i � e 2 s ω s = E s − ( E 0 + i + E 0 + f ) / 2 ¯ � ˆ � ˆ � ˆ T − , [ ˆ T − , ˆ T − , [ ˆ T − , ˆ T − , ˆ � � � V C ] H tot ] H str = 0 used assuming = H tot = ˆ ˆ K + ˆ H str + ˆ V C F ≈ − 2 M 0 ν f | ˆ T − | IAS �� IAS | ˆ ω IAS � 0 + T − | 0 + e 2 ¯ i � � ˆ ≈ 1 T − � 2 | 0 + f | ˆ e 2 � 0 + V C | DIAS �� DIAS | i �

  9. Measuring M 0 ν F Measure the ∆ T = 2 isospin-forbidden matrix f | ˆ element � 0 + T − | IAS � charge-exchange ( n , p )-type reaction � IAS | ˆ T + | 0 + f � ∼ 0 . 001 Challenge: � IAS | ˆ T − | 0 + i � M 0 ν M 0 ν F ( QRPA ) GT ≈ 3 ÷ 5 ≈ − 2 . 5 and M 0 ν M 0 ν F ( S M ) F

  10. 48 Ca → 48 Ti IAS of 48 Ca ( T = 4 , T z = 3 ) in 48 Sc 1. is located at E x = 6.678 MeV ( ¯ ω IAS ≈ 8.5 MeV) under threshold of particle emission 2. 100% γ -decay to 1 + state at E x = 2.517 MeV ( E γ = 4.160 MeV) 3. a single state — no fragmentation (too low density of T = 3 0 + states around the IAS) Example Reaction: 48 Ti(n,p) 48 Sc(IAS)

  11. 48 Ca → 48 Ti IAS ↓

  12. 48 Ca → 48 Ti

  13. 48 Ca → 48 Ti � IAS | ˆ = − e 2 M 0 ν T + | 0 f � 1 F ω IAS R · � IAS | ˆ 2 ¯ N − Z T − | 0 i � 2 � � � IAS | ˆ T + | 0 f � QRPA: M 0 ν ≈ 2 · 10 − 6 F = 0 . 6 ⇒ � � � � � IAS | ˆ T − | 0 i � � � � � d 2 σ pn d Ω dE ≈ 10 mb / (sr MeV), E p = 134 MeV (B.D.Anderson et al., PRC 31 (1985)) ⇒ d 2 σ np d Ω dE ≈ 20 nb / (sr MeV) E p → 0 . 5 E p ⇒ σ np → 4 σ np σ F ∝ E − 2 Unit cross section: ˆ p

  14. Reaction analysis Basic requirements for a charge-exchange probe Measure cross section ≡ Know � IAS | ˆ T + | 0 + f � ???

  15. Reaction analysis Any hadronic probe adds isospin to nuclear system (weak interaction probe would be ideal) to probe small admixture of | DIAS � to | 0 + f � ⇒ must be forbidden to connect in reaction main components of | IAS � and | 0 + f � ( ∆ T = 2 ) Only T = 1 2 probes (( n , p ), ( t , 3 He),. . . )

  16. Reaction analysis f → IAS ) ∝ � IAS | ˆ σ np ( 0 + T + | 0 + f � ??? ˆ T − | 0 + i � = | T 0 T 0 � ; | IAS � = 2 T 0 | 0 + i � + α | T 0 − 1 T 0 − 1 � √ ( ˆ T − ) 2 | 0 + f � = | T 0 − 2 T 0 − 2 � + β | T 0 − 1 T 0 − 2 � + γ 4 T 0 ( 2 T 0 − 1 ) | 0 + i � √ = | DIAS �

  17. Reaction analysis 48 Ca, 5 � ω s.p. space, QRPA σ np ( γ DIAS → IAS ) is 100 times larger than for the other mechanisms via admixtures of IVMR Assumptions: 2 , r 2 � � IVMR s | ˆ ˆ R − = � σ pn ( 0 + � R − | 0 + � i → IVMR s ) = σ 0 R 2 τ − a i � � � a a � and i → IVMR ) ≈ σ pn ( 0 + i → IAS ) σ pn ( 0 + 10

  18. Conclusions • M 0 ν F can be related to ∆ T = 2 isospin admixture of the DIAS in the final g.s. and can be extracted from measured Fermi m.e. � IAS | ˆ T + | 0 f � • can help to discriminate between nuclear structure models (di ff erence in M 0 ν F as much as the factor of 5) • Choice of a target: well-isolated IAS of 48 Ca in 48 Sc (weak Coulomb mixing applies) Reaction: 48 Ti(n,p) 48 Sc(IAS) Estimates: σ np ≈ 20 nb / (sr MeV) and σ np ∝ � IAS | ˆ T + | 0 f �

  19. Conclusions • Role of spread of IAS in heavy nuclei to be investigated Supported by: DFG TR27 “Neutrinos and beyond”

  20. Backup

  21. Backup

  22. Spread of IAS Why no fragmentation of IAS of 48 Ca? Density of 0 + states around IAS back-shifted Fermi-gas (BSFG) model: ρ ( U , J , π ) = 1 2 F ( U , J ) ρ ( U ) √ 1 1 exp( 2 F ( U , J ) = 2 J + 1 � − J ( J + 1 ) aU ) � ρ ( U ) = 2 σ 2 exp ( U + t ) 5 / 4 , √ σ a 1 / 4 2 σ 2 12 2 U = at 2 − t , U = E − δ, the level density parameter a ; the spin cut-o ff parameter σ 2 = I rigid � 2 t ≈ 0 . 015 A 5 / 3 t ; the backshift δ ( > 0 even-even, ≈ 0 odd-A, < 0 odd-odd);

  23. Spread of IAS 46 Sc a = 5 . 96 MeV − 1 , δ = − 2 . 37 MeV (W. Dilg et al. NPA 217 (1973)) E x = 6.8 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 59 MeV − 1 but at E x = 3 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 5 MeV − 1 (no J = 0 state is listed in ENSDF for 48 Sc for E x < 3 MeV). 46 Sc a = 5 . 74 MeV − 1 , δ = − 1 . 9 MeV (RIPL-2) E x = 6.8 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 33 MeV − 1 at E x = 3 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 3 MeV − 1

  24. Spread of IAS 46 Sc a = 5 . 96 MeV − 1 , δ = − 2 . 37 MeV (W. Dilg et al. NPA 217 (1973)) E x = 6.8 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 59 MeV − 1 but at E x = 3 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 5 MeV − 1 (no J = 0 state is listed in ENSDF for 48 Sc for E x < 3 MeV). 46 Sc a = 5 . 74 MeV − 1 , δ = − 1 . 9 MeV (RIPL-2) E x = 6.8 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 33 MeV − 1 at E x = 3 MeV → ρ ( 0 + ) + ρ ( 0 − ) ≈ 3 MeV − 1 76 As IAS at E x = 8 . 24 MeV a = 10 . 81 MeV − 1 , δ = − 1 . 45 MeV (W. Dilg et al. NPA 217 (1973)) → ρ ( 0 + ) + ρ ( 0 − ) ≈ 7000 MeV − 1

  25. Spread of IAS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend