lucifer
play

LUCIFER Low background Underground Cryogenic Installation For - PowerPoint PPT Presentation

LUCIFER Low background Underground Cryogenic Installation For Elusive Rates Marco Vignati INFN Roma NPB 2012, Shenzhen, 24 Sept. 2012 Bolometric searches of 0 DBD Bilenky and Giunti, 2012 1 CUORICINO: Current Bound 11kg 130 Te bkg = 0.17


  1. LUCIFER Low background Underground Cryogenic Installation For Elusive Rates Marco Vignati INFN Roma NPB 2012, Shenzhen, 24 Sept. 2012

  2. Bolometric searches of 0 ν DBD Bilenky and Giunti, 2012 1 CUORICINO: Current Bound 11kg 130 Te bkg = 0.17 c/keV/kg/y KK evidence - 76 Ge 10 � 1 CUORE: 206kg 130 Te bkg ~ 1 · 10 -2 c/keV/kg/y IS Cosmological Limit |m �� | [eV] 10 � 2 Needs: 1 ton isotope bkg < 10 -3 c/keV/kg/y NS 10 � 3 1 � 2 � 3 � 10 � 4 10 � 4 10 � 3 10 � 2 10 � 1 1 m min [eV] 2

  3. CUORE: the α nightmare • MC: most of the background in CUORICINO is due to degraded α particles which release only a part of their energy in the detector Cu (surface contaminations, mainly in copper). CUORICINO TeO 2 TeO 2 α ’s • TeO 2 bolometers, per se, do not allow to discriminate β and α particles. ‣ α bkg partially reduced by cleaning the detector parts. ‣ β / γ smaller in CUORE thanks also to the self-shielding geometry. 3

  4. Scintillating bolometers • Scintillating crystals can be operated as bolometers. Unfortunately TeO 2 does not scintillate, other compounds must be considered. • The simultaneous read-out of light and thermal signals allows to discriminate the α background thanks to the scintillation yield different from β particles. Light detector Thermistor Bolometer Energy Release 4

  5. Isotope choice . • 0 ν DBD candidates of experimental interest: (arXiv:1201.4916) 76 Ge 130 Te 136 Xe 116 Cd 100 Mo • In general, Q > 2615 keV isotopes 82 Se are preferred because they lie above the natural radioactivity edge. • However the choice has been U and Th dominated so far by technology environmental bkg compromises. 5

  6. Light detectors • Germanium disks (5 cm diameter, 0.1-1 mm thick). • Calibration with a 55 Fe source: 5.9 & 6.5 keV X-rays. ‣ Δ E @ 55 Fe: ~ 130 eV RMS ‣ Δ E @baseline: 100 eV RMS 6

  7. Candidate #1: ZnSe Largest crystal DBD Isotope: 82 Se operated so far: 431g Q-value 2995 [keV] isotopic 9% abundance Light Yield 7-11 [keV/MeV] QF 4 7

  8. ZnSe Light Yield [keV/MeV] 40 • QF > 1 is odd: 35 30 ‣ Observed only in this 25 compound (CdWO 4 20 ZnMoO 4 and other 15 crystals have QF < 1). 10 0 ν DBD ‣ not understood. 5 0 1000 2000 3000 4000 5000 6000 7000 8000 Energy [keVee] Light Decay Time [ms] Light decay-time [ms] β / γ -background 14 13 • Excellent separation α -crystal contamination 12 using light energy and 11 signal shape 10 9 8 7 0 50 100 150 200 250 300 350 400 Detected Light [keV] 8

  9. 21 ZnSe: Light-Heat correlation 21 Detected light [keV] Detected light [keV] 20 20 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 2590 2600 2610 2620 2630 2640 2590 2600 2610 2620 2630 2640 Energy [keVee] Decorrelated energy [keVee] counts / 2 keVee Integral Integral 101 101 Integral Integral 101 101 16 12 � � 2 2 / ndf / ndf 4.035 / 13 4.035 / 13 � � 2 2 / ndf / ndf 8.021 / 14 8.021 / 14 14 10.5 10.5 1.5 1.5 13 13 1.9 1.9 10 A A ± ± A A ± ± 12 mean mean mean mean 2614 2614 1.0 1.0 2615 2615 0.6 0.6 ± ± ± ± Δ E@2615 keV: 8 10 � � 7.938 7.938 1.116 1.116 � � 5.741 5.741 0.594 0.594 ± ± ± ± 8 6 13 keV FWHM 6 4 4 2 2 0 0 2590 2600 2610 2620 2630 2640 2590 2600 2610 2620 2630 2640 Energy [keVee] Decorrelated energy [keVee] 9

  10. Plan for a ZnSe array in 2015 • Operation of a tower of 32-40 Zn 82 Se crystals at LNGS. ‣ Option1: use the Cuoricino cryostat in hallA (presently hosting CUORE-0), if CUORE-0 stops in 2015. ‣ Option2: use the cryostat in hallC (presently running the CUORE-0 and LUCIFER R&Ds). Needs cryostat update. Cuoricino cryostat: • Inner shield: - 1cm Roman Pb A ( 210 Pb) < 4 mBq/Kg • External shield: - 20 cm Pb 4 crystals LUCIFER - 10 cm Borated per floor polyethylene • Nitrogen flushing to avoid Rn contamination. 10

  11. ZnSe: schedule 2012 2013 2014 2015 Light detector R&D Thermistors prod. Crystal growth R&D 82 Se prod. (15 kg) Enriched crystals production Array assembly The most crucial part is represented by the crystal growth. The supplier (Ukraine) is presently fine-tuning the complicate procedure (that starts with metal Zn and metal Se). The request of minimizing the 82 Se waste is a complicate issue. The target is to reach > 75 % efficiency. 11

  12. Do we need a μ -veto? 15 Light Yield [keV/MeV] ZnSe data: β / γ 14 1 β / γ event above α 13 the 2615 keV line 12 in 580 hours 11 10 9 ~ 5x10 -2 counts/keV/kg/y 1500 2000 2500 3000 3500 4000 Energy [keVee] • The event includes hits on close detectors (multi-site event) ‣ Multiple γ ’s produced by μ interactions in the materials close to the detector. • Easy to remove in this case, but what if one has one hit only? ‣ Montecarlo simulation under development. 12

  13. Candidate #2: ZnMoO 4 Largest crystal DBD Isotope: 100 Mo operated so far: 330g Q-value 3034 [keV] isotopic 10% abundance Light Yield 1.5 [keV/MeV] QF 0.2 13

  14. LY [keV/MeV] Light Yield [keV/MeV] 2.4 ZnMoO 4 . 2.2 β / γ source 2 1.8 1.6 1.4 0 ν DBD 1.2 Excellent discrimination 1 using the light signal 0.8 0.6 α source 0.4 0.2 500 1000 1500 2000 2500 3000 3500 4000 Energy [keV] TVR [a.u.] Heat signal shape parameter 4 α source 2 0 -2 0 ν DBD Discrimination using the -4 β / γ source shape of the heat signal! -6 -8 -10 -12 Eur. Phys. J. C 72 (2012) 2142 -14 0 500 1000 1500 2000 2500 3000 3500 4000 14 Energy [keV]

  15. ZnMoO 4 counts / 3 keV 70 FWHM= 6.3 keV 90 60 50 Entries 11528 11528 Energy resolution similar 80 40 2.925 to CUORICINO 70 30 20 (2x better than ZnSe) 60 10 0 50 2590 2600 2610 2620 2630 2640 1.153e+04 40 β / γ source 30 Counts / 9 keV 210 Po 20 Entries 2821 2 10 10 Mean 2742 0 RMS 1449 500 1000 1500 2000 2500 source � � Energy [keV] 222 Rn Integral 2821 226 Ra 10 218 Internal contaminations: Po 214 214 Bi � Po 232 Th < 1.4 pg/g 1 3 10 × 1 2 3 4 5 6 7 8 9 10 Energy [keV] 15

  16. Candidate #3: TeO 2 TeO 2 does not scintillate, however MeV β ’s emit Č erenkov light, unlike α ’s [ T. Tabarelli de Fatis, Eur. Phys. J. C 65 (2010) 359] . 800 � dN/d λ [ μ m -1 ] dN/d 700 Simulated Č erenkov emission 600 spectrum from 500 400 1.5 MeV γ in TeO 2 at low 300 temperatures. 200 100 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 � ( µ m) � � 2 / ndf / ndf 2 3.723 / 5 3.723 / 5 λ [ μ m] Prob Prob 0.5899 0.5899 p0 p0 -3.111e-08 -3.111e-08 ± ± 1.143e-09 1.143e-09 p1 p1 0.0001678 0.0001678 ± ± 4.448e-06 4.448e-06 p2 p2 0.1222 0.1222 ± ± 0.00428 0.00428 Produced Cherenkov light[eV] p3 p3 -10.43 -10.43 0.8393 0.8393 1000 ± ± Cherenkov light (eV) 867 eV 900 800 Simulated emitted 700 600 Č erenkov light as a 0 ν DBD 500 function of β / γ energy. 400 300 200 100 0 0 500 1000 1500 2000 2500 Photon Energy (keV) β / γ energy [keV] 16

  17. Č erenkov from a CUORE crystal 0.4 Light energy [keV] 2 2 / ndf / ndf � � 11.9 / 6 11.9 / 6 0 ν DBD E E [keV] [keV] 360.3 360.3 64.47 64.47 ± ± 0.3 th th Yield [eV/MeV] Yield [eV/MeV] 48.33 48.33 ± ± 2.846 2.846 0.2 e c r u o s γ / β 0.1 0 210 Po- α contamination -0.1 Detected β / γ light: 48 eV/MeV -0.2 105 eV @2.527 MeV -0.3 0 1000 2000 3000 4000 5000 Heat energy [keV] • Detected light not sufficient to discriminate α ’s event by event. ‣ Needs light detector development: light collection, energy resolution. 17

  18. CUORE + Č erenkov + enrichment 18 y] γ bkg. (MC)= 0.001 26 16 DBD sensitivity [10 14 bkg. [counts/keV/kg/y] � 12 0.01 with 90% enr. 0.04 with 90% enr. 10 0.01 8 0.04 6 � 4 68% 0 2 0 0 1 2 3 4 5 6 7 8 Signal/Noise of light detector 18

  19. CUORE + Č erenkov + enrichment 18 y] γ bkg. (MC)= 0.001 Present: S = 105, N = 75 eV 26 16 DBD sensitivity [10 14 bkg. [counts/keV/kg/y] � 12 0.01 with 90% enr. 0.04 with 90% enr. 10 0.01 8 0.04 6 � 4 68% 0 2 0 0 1 2 3 4 5 6 7 8 Signal/Noise of light detector 18

  20. CUORE + Č erenkov + enrichment 18 y] γ bkg. (MC)= 0.001 Present: S = 105, N = 75 eV 26 16 Target DBD sensitivity [10 14 bkg. [counts/keV/kg/y] � 12 0.01 with 90% enr. 0.04 with 90% enr. 10 0.01 8 0.04 6 � 4 68% 0 2 0 0 1 2 3 4 5 6 7 8 Signal/Noise of light detector 18

  21. Overview until 2015 • ZnSe ‣ Target: build a bolometric experiment of ~ 10 kg of 82 Se ‣ Status: Isotope in production, crystal growth under optimization. • ZnMoO 4 ‣ Target: build a bolometric experiment of ~ 10 kg of 100 Mo ‣ Status: MoU with IN2P3 and ITEP in consideration. • TeO 2 ‣ Target: develop light detectors with S/N improved by a factor 4. ‣ Status: KIDs and Neganov-Luke detectors under development. 19

  22. Overview until 2015 • ZnSe baseline ‣ Target: build a bolometric experiment of ~ 10 kg of 82 Se ‣ Status: Isotope in production, crystal growth under optimization. • ZnMoO 4 ‣ Target: build a bolometric experiment of ~ 10 kg of 100 Mo ‣ Status: MoU with IN2P3 and ITEP in consideration. • TeO 2 ‣ Target: develop light detectors with S/N improved by a factor 4. ‣ Status: KIDs and Neganov-Luke detectors under development. 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend