lower stretch spanning trees
play

Lower-Stretch Spanning Trees Presenter: Yajun Wang COMP670P 1-1 - PowerPoint PPT Presentation

Lower-Stretch Spanning Trees Presenter: Yajun Wang COMP670P 1-1 Introduction Graph Embedding on Tree Metrics Average O (log 2 n log log n ) stretch. stretch T ( u, v ) = dist T ( u,v ) d ( u,v ) 1 ave-stretch T ( E ) = ( u,v ) E


  1. Lower-Stretch Spanning Trees Presenter: Yajun Wang COMP670P 1-1

  2. Introduction Graph Embedding on Tree Metrics Average O (log 2 n log log n ) stretch. stretch T ( u, v ) = dist T ( u,v ) d ( u,v ) 1 � ave-stretch T ( E ) = ( u,v ) ∈ E stretch T ( u, v ) | E | Star Decomposition COMP670P 2-1

  3. Notation The boundary of S , ∂S : the set of edges with exactly one endpoint in S . The volumn of a set of edges F , vol( F ) : the size of the set F . The volumn of a set of vertices S , vol( S ) : the number of edges incident to S. The ball shell around a vertex v , BS( r, v ) : the set of vertices ”right” outside B ( r, v ) . The cost (weight) of an edge, the length is d ( e ) = 1 /w ( e ) . COMP670P 3-1

  4. Low-Cost Star-Decomposition A multiway partition { V 0 , V 1 , . . . , V k } with center x 0 ∈ V 0 is a star-decomposition : subgraphs induced by V i are connected. x i ∈ V i is connected to a vertex y i ∈ V 0 by an edge ( x i , y i ) ∈ E. ( bridge). x k r 0 r k y k x 0 V 0 COMP670P 4-1

  5. Low-Cost Star-Decomposition Let r = rad G ( x 0 ) , and r i = rad V i ( x i ) . For δ, ǫ ≤ 1 / 2 , a star-decomposition is a ( δ, ǫ ) -star-decomposition if δr ≤ r 0 ≤ (1 − δ ) r r 0 + d ( x i , y i ) + r i ≤ (1 + ǫ ) r The cost of the star-decomposition is cost( ∂ ( V 0 , V 1 , . . . , V k )) , the sum of cost of the edges between the sets. COMP670P 5-1

  6. Low-Cost Star-Decomposition Let G = ( V, E, w ) be a connected weighted graph and x 0 ∈ V . For every positive ǫ ≤ 1 / 2 , ( { V 0 , V 1 , . . . , V k } , x , y ) = starDecomp( G , x 0 , 1 / 3 , ǫ ) , in time O ( m + n log n ) , returns a (1 / 3 , ǫ ) -star-decomposition of G with center x 0 of cost cost( ∂ ( V 0 , V 1 , . . . , V k )) ≤ 6 m log 2 ( m + 1) ǫ · rad G ( x 0 ) δr ≤ r 0 ≤ (1 − δ ) r r 0 + d ( x i , y i ) + r i ≤ (1 + ǫ ) r COMP670P 6-1

  7. O (log 3 m ) Average Stretch Tree Algorithm for Unweighted Graphs n + 6)) − 1 . Fix α = (2 log 4 / 3 (ˆ T = UnweightedLowStretchTree( G, x 0 ) 1. If | V | ≤ 2 , return G . 2. Set ρ = rad G ( x 0 ) 3. ( { V 0 , V 1 , . . . , V k } , x , y ) = StarDecomp( G , x 0 , 1 / 3 , α ) 4. For each i , set T i = UnweightedLowStretchTree( G ( V i ) , x i ) . 5. Set T = ∪ i T i ∪ i ( y i , x i ) . COMP670P 7-1

  8. O (log 3 m ) Average Stretch Tree Analysis Depth of recursion: O (log 4 / 3 n ) rad R t ( G ) ( x 0 ) ≤ (1 + α ) t rad G ( x 0 ) ≤ √ e · rad G ( x 0 ) . X X stretch T ( u, v ) ≤ (dist T ( x 0 , u ) + dist T ( x 0 , v )) ( u,v ) ∈ ∂ ( V 0 ...,V k ) ( u,v ) ∈ ∂ ( V 0 ...,V k ) 2 √ e · rad G ( x 0 ) X ≤ ( u,v ) ∈ ∂ ( V 0 ,...,V k ) 2 √ e · rad G ( x 0 ) 6 m log 2 ( ˆ m + 1) ≤ α · rad G ( x 0 ) m log 3 ˆ � ( u,v ) ∈ E stretch T ( u, v ) = O ( ˆ m ) . COMP670P 8-1

  9. O (log 3 m ) Average Stretch Tree Algorithm for Weighted Graphs n + 32)) − 1 . Fix β = (2 log 4 / 3 (ˆ T = LowStretchTree( G, x 0 ) 1. If | V | ≤ 2 , return G . 2. Set ρ = rad G ( x 0 ) 3. Let ˜ G = ( ˜ V , ˜ E ) be the graph by contracting all edges in G with length less than βρ/ ˆ n. 4. ( { ˜ V 0 , . . . , ˜ V k } , x , y ) = StarDecomp( ˜ G , x 0 , 1 / 3 , β ) 5. For each i , let V i be the preimage of ˜ V i , and ( x i , y i ) be one of the preimage of ( ˜ x i , ˜ y I ) . 6. For each i , set T i = LowStretchTree( G ( V i ) , x i ) . 7. Set T = ∪ i T i ∪ i ( y i , x i ) . COMP670P 9-1

  10. O (log 3 m ) Average Stretch Tree Analysis Let t = 2 log 4 / 3 (ˆ n + 32) and ρ t = rad R t ( G ) ( x 0 ) ρ t ≤ √ e · rad G ( x 0 ) Each component has radius at most ρ (3 / 4) t ≤ ρ/n 2 . . Each edge appears at most log 4 / 3 ((2ˆ n/β ) + 1) recursion depths. The total contribution to the stretch at level t is O ( vol ( E t ) log 2 ˆ m ) COMP670P 10-1

  11. Star Decomposition Concentric System A family of vertex sets L = { L r ⊆ V : r ∈ R + ∪ { 0 }} . 1. L 0 � = ∅ , 2. L r ⊆ L r ′ for all r ≤ r ′ , 3. if a vertex u ∈ L r and ( u, v ) ∈ E , then v ∈ L r + d ( u,v ) . COMP670P 11-1

  12. Star Decomposition Concentric System A family of vertex sets L = { L r ⊆ V : r ∈ R + ∪ { 0 }} . 1. L 0 � = ∅ , 2. L r ⊆ L r ′ for all r ≤ r ′ , 3. if a vertex u ∈ L r and ( u, v ) ∈ E , then v ∈ L r + d ( u,v ) . Property: For every two reals 0 ≤ λ ≤ λ ′ , there exists a real r ∈ [ λ, λ ′ ) such that � � �� cost ( ∂ ( L r )) ≤ vol( L r ) m λ ′ − λ max 1 , log 2 vol( E ( L r )) COMP670P 12-1

  13. Star Decomposition Proof of the property: cost ( ∂ ( L r )) ≤ vol( L r ) � � m �� λ ′ − λ max 1 , log 2 vol( E ( L r )) Sort the vertices according to the distances to the center. r i − r j Let µ i = vol( E ( B i )) + � r k − r j . ( v j ,v k ) ∈ E : j ≤ i<k µ i +1 = µ i + cost( ∂ ( B i ))( r i +1 − r i ) � � Let r a − 1 ≤ λ < λ ′ ≤ r b +1 , and η = log 2 m vol( E ( B a − 1 )) Prove there exists i ∈ [ a − 1 , b ] such that cost( ∂ ( B i )) ≤ µ i η/ ( λ ′ − λ ) . COMP670P 13-1

  14. Star Decomposition r = BallCut ( G, x 0 , ρ, δ ) 1. Set r = δρ 2. While cost( ∂ ( B ( r, x 0 ))) > vol( B ( r,x 0 ))+1 log 2 ( m + 1) , (1 − 2 δ ) ρ Find the next vertex v and set r = dist ( x 0 , v ) . Result: ρ/ 3 ≤ r ≤ 2 ρ/ 3 cost( ∂ ( V 0 )) > 3(vol( V 0 ) + 1) log 2 ( | E | + 1) ρ COMP670P 14-1

  15. Star Decomposition Ideals and Cones For set S ⊆ V, F ( S ) = { ( u → v ) : ( u, v ) ∈ E, dist( u, S ) + d ( u, v ) = dist( v, S ) } The ideal of v , I S ( v ) , induced by S , is the set of vertices that reachable from v in F ( S ) The cone of width l around v induced by S , C S ( l, v ) , is the set of vertices in V that can be reached from v by a path, the sum of lengths of whose edges not in F ( S ) is at most l. COMP670P 15-1

  16. Star Decomposition Cones are concentric r = ConeCut ( G, v, λ, λ ′ , S ) 1. Set r = λ if vol( E ( C S ( λ, v ))) = 0 , Set µ = (vol( C S ( r, v )) + 1) log 2 ( m + 1) . otherwise, Set µ = vol( C S ( r, v )) log 2 ( m/ vol( E ( C S ( λ, v ))) . 2. While cost( ∂ ( C S ( r, v ))) > µ/ ( λ ′ − λ ) , Find the next vertex w minimize dist( w, C S ( r, v )) and set r = r + dist ( w, C S ( r, v )) . r ∈ [ λ, λ ′ ) » – cost( ∂ ( C S ( r, v ))) ≤ vol( C S ( r, v )) m max 1 , log 2 λ ′ − λ vol( E ( C S ( r, v ))) COMP670P 16-1

  17. Star Decomposition Final Algorithm ( { V 0 , . . . , V k } , x , y ) = StarDecomp( G, x 0 , δ, ǫ ) 1. Set ρ = rad G ( x 0 ); r 0 = BallCut( G, x 0 , ρ, δ ) and V 0 = B ( r 0 , x 0 ) . 2. Let S = BS ( r 0 , x 0 ); 3. Set G ′ = ( V ′ , E ′ , w ′ ) = G ( V − V 0 ) . 4. Set ( { V 1 , . . . , V k , x } ) = ConeDecomp( G ′ , S, ǫρ/ 2); 5. For each i ∈ [1 : k ] , set y k to be a vertex in V 0 such that ( x k , v k ) ∈ E and y k is on a shortest path from x 0 to x k ( { V 1 , . . . , V k , x } ) = ConeDecomp( G, S, ∆) 1. Set G 0 = G, S 0 = S, k = 0 . 2. While S k is not empty (a) k = k + 1 ; x k ∈ S k ; r k = ConeCut( G k − 1 , x k , 0 , ∆ , S k − 1 ) . (b) Set V k = C S k − 1 ( r k , x k ); G k = G ( V −∪ k i =1 V k ) , S k = S k − 1 − V k . 3. Set x = ( x 1 , . . . , x k ) . COMP670P COMP670P 17-1

  18. Star Decomposition Cost cost( ∂ ( V 0 )) > 3(vol( V 0 ) + 1) log 2 ( | E | + 1) ρ i =0 V i )) ≤ 2(1 + vol( V j )) log 2 ( m + 1) cost( E ( V j , V − ∪ j ǫρ k cost( E ( V j , V − ∪ j X cost( ∂ ( V 0 , . . . , V K )) ≤ i ]= V i )) j =0 k 2 log 2 ( m + 1) X ≤ (vol( V j ) + 1) ǫρ j =0 6 m log 2 ( m + 1) ≤ ǫρ COMP670P 18-1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend