logic as a tool chapter 1 understanding propositional
play

Logic as a Tool Chapter 1: Understanding Propositional Logic 1.3 - PowerPoint PPT Presentation

Logic as a Tool Chapter 1: Understanding Propositional Logic 1.3 Logical equivalence Negation normal form of propositional formulae Valentin Goranko Stockholm University September 2016 Goranko Logical equivalence of propositional formulae


  1. Logic as a Tool Chapter 1: Understanding Propositional Logic 1.3 Logical equivalence Negation normal form of propositional formulae Valentin Goranko Stockholm University September 2016 Goranko

  2. Logical equivalence of propositional formulae Propositional formulae A and B are logically equivalent, denoted A ≡ B , if they obtain the same truth value under any truth valuation (of the variables occurring in them). Goranko

  3. Logical equivalence of propositional formulae Propositional formulae A and B are logically equivalent, denoted A ≡ B , if they obtain the same truth value under any truth valuation (of the variables occurring in them). Examples: ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q Goranko

  4. Logical equivalence of propositional formulae Propositional formulae A and B are logically equivalent, denoted A ≡ B , if they obtain the same truth value under any truth valuation (of the variables occurring in them). Examples: ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q ¬ ( p ∧ q ) ¬ ∨ ¬ p q p q T T F T T T F T F F T T F T T F F F T T T F F T T F F T T F T F T F F T F F F T F T T F Goranko

  5. Logical equivalence of propositional formulae Propositional formulae A and B are logically equivalent, denoted A ≡ B , if they obtain the same truth value under any truth valuation (of the variables occurring in them). Examples: ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q ¬ ( p ∧ q ) ¬ ∨ ¬ p q p q T T F T T T F T F F T T F T T F F F T T T F F T T F F T T F T F T F F T F F F T F T T F p ∧ ( p ∨ q ) ≡ p ∧ p ≡ p Goranko

  6. Logical equivalence of propositional formulae Propositional formulae A and B are logically equivalent, denoted A ≡ B , if they obtain the same truth value under any truth valuation (of the variables occurring in them). Examples: ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q ¬ ( p ∧ q ) ¬ ∨ ¬ p q p q T T F T T T F T F F T T F T T F F F T T T F F T T F F T T F T F T F F T F F F T F T T F p ∧ ( p ∨ q ) ≡ p ∧ p ≡ p p q p ∧ ( p ∨ q ) p ∧ p T T T T T T T T T T T F T T T T F T T T F T F F F T T F F F F F F F F F F F F F Goranko

  7. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A Goranko

  8. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A ◮ Logical equivalence is reducible to logical validity: A ≡ B iff | = A ↔ B . Goranko

  9. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A ◮ Logical equivalence is reducible to logical validity: A ≡ B iff | = A ↔ B . ◮ ≡ is an equivalence relation, i.e., reflexive, symmetric, and transitive. Goranko

  10. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A ◮ Logical equivalence is reducible to logical validity: A ≡ B iff | = A ↔ B . ◮ ≡ is an equivalence relation, i.e., reflexive, symmetric, and transitive. ◮ Moreover, ≡ is a congruence with respect to the propositional connectives, i.e.: Goranko

  11. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A ◮ Logical equivalence is reducible to logical validity: A ≡ B iff | = A ↔ B . ◮ ≡ is an equivalence relation, i.e., reflexive, symmetric, and transitive. ◮ Moreover, ≡ is a congruence with respect to the propositional connectives, i.e.: ⊲ if A ≡ B then ¬ A ≡ ¬ B , and Goranko

  12. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A ◮ Logical equivalence is reducible to logical validity: A ≡ B iff | = A ↔ B . ◮ ≡ is an equivalence relation, i.e., reflexive, symmetric, and transitive. ◮ Moreover, ≡ is a congruence with respect to the propositional connectives, i.e.: ⊲ if A ≡ B then ¬ A ≡ ¬ B , and ⊲ if A 1 ≡ B 1 and A 2 ≡ B 2 then ( A 1 • A 2 ) ≡ ( B 1 • B 2 ), where • ∈ {∧ , ∨ , → , ↔} . Goranko

  13. Some basic properties of logical equivalence ◮ Logical equivalence is reducible to logical consequence: A ≡ B iff A | = B and B | = A ◮ Logical equivalence is reducible to logical validity: A ≡ B iff | = A ↔ B . ◮ ≡ is an equivalence relation, i.e., reflexive, symmetric, and transitive. ◮ Moreover, ≡ is a congruence with respect to the propositional connectives, i.e.: ⊲ if A ≡ B then ¬ A ≡ ¬ B , and ⊲ if A 1 ≡ B 1 and A 2 ≡ B 2 then ( A 1 • A 2 ) ≡ ( B 1 • B 2 ), where • ∈ {∧ , ∨ , → , ↔} . Theorem (Equivalent replacement) Let A , B , C be any propositional formulae p be a propositional variable. If A ≡ B then C ( A / p ) ≡ C ( B / p ) , where C ( X / p ) is the result of simultaneous substitution of al occurrences of p by X. Goranko

  14. Some important logical equivalences • Idempotency: p ∧ p ≡ p ; p ∨ p ≡ p . Goranko

  15. Some important logical equivalences • Idempotency: p ∧ p ≡ p ; p ∨ p ≡ p . • Commutativity: p ∧ q ≡ q ∧ p ; p ∨ q ≡ q ∨ p . Goranko

  16. Some important logical equivalences • Idempotency: p ∧ p ≡ p ; p ∨ p ≡ p . • Commutativity: p ∧ q ≡ q ∧ p ; p ∨ q ≡ q ∨ p . • Associativity: ( p ∧ ( q ∧ r )) ≡ (( p ∧ q ) ∧ r ); ( p ∨ ( q ∨ r )) ≡ (( p ∨ q ) ∨ r ) . Note that this property allows us to omit the parentheses in multiple conjunctions and disjunctions. Goranko

  17. Some important logical equivalences • Idempotency: p ∧ p ≡ p ; p ∨ p ≡ p . • Commutativity: p ∧ q ≡ q ∧ p ; p ∨ q ≡ q ∨ p . • Associativity: ( p ∧ ( q ∧ r )) ≡ (( p ∧ q ) ∧ r ); ( p ∨ ( q ∨ r )) ≡ (( p ∨ q ) ∨ r ) . Note that this property allows us to omit the parentheses in multiple conjunctions and disjunctions. • Absorption: p ∧ ( p ∨ q ) ≡ p ; p ∨ ( p ∧ q ) ≡ p . Goranko

  18. Some important logical equivalences • Idempotency: p ∧ p ≡ p ; p ∨ p ≡ p . • Commutativity: p ∧ q ≡ q ∧ p ; p ∨ q ≡ q ∨ p . • Associativity: ( p ∧ ( q ∧ r )) ≡ (( p ∧ q ) ∧ r ); ( p ∨ ( q ∨ r )) ≡ (( p ∨ q ) ∨ r ) . Note that this property allows us to omit the parentheses in multiple conjunctions and disjunctions. • Absorption: p ∧ ( p ∨ q ) ≡ p ; p ∨ ( p ∧ q ) ≡ p . • Distributivity: p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ); p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r ) . Goranko

  19. Other useful logical equivalences Goranko

  20. Other useful logical equivalences • A ∨ ¬ A ≡ Goranko

  21. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; Goranko

  22. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ Goranko

  23. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ Goranko

  24. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ Goranko

  25. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; Goranko

  26. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ Goranko

  27. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ Goranko

  28. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ Goranko

  29. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; Goranko

  30. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; A ∨ ⊥ ≡ Goranko

  31. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; A ∨ ⊥ ≡ A Goranko

  32. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; A ∨ ⊥ ≡ A • ¬ A ≡ A → ⊥ Goranko

  33. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; A ∨ ⊥ ≡ A • ¬ A ≡ A → ⊥ • A ↔ B ≡ ( A → B ) ∧ ( B → A ) Goranko

  34. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; A ∨ ⊥ ≡ A • ¬ A ≡ A → ⊥ • A ↔ B ≡ ( A → B ) ∧ ( B → A ) • A → B ≡ ¬ A ∨ B Goranko

  35. Other useful logical equivalences • A ∨ ¬ A ≡ ⊤ ; A ∧ ¬ A ≡ ⊥ • A ∧ ⊤ ≡ A ; A ∧ ⊥ ≡ ⊥ • A ∨ ⊤ ≡ ⊤ ; A ∨ ⊥ ≡ A • ¬ A ≡ A → ⊥ • A ↔ B ≡ ( A → B ) ∧ ( B → A ) • A → B ≡ ¬ A ∨ B • A ∨ B ≡ ¬ A → B Goranko

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend