Locally Optimal Reach Set Over-approximation for Nonlinear Systems EMSOFT 2016 Chuchu Fan Sayan Mitra Jim Kapinski Xiaoqing Jin
How to check safety of an autonomous maneuver? ๐ ๐ก $ gain overtake Given controller and separation threshold switch to requirement, check safety with respect to left switch to right ranges of initial relative positions, speeds, abort reach road conditions. threshold EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 2
Verification challenge model, bug trace Verification simulator, requirements Algorithms certificate Bug discovery โ faster development Certificate โ evidence for DO178C, ISO26262, etc. Challenge: models of complex control systems often do not have analytical solutions โ Simulation โ proofs? EMSOFT 2016 โ Locally optimal 3 reachability โ Chuchu Fan โ UIUC
Safety verification problem Consider nonlinear ODE ๐ฆฬ = ๐ ๐ฆ , ๐ฆ โ โ - Relative distance Trajectory ๐ ๐ฆ / , ๐ข : state at time ๐ข from โ ๐ ๐ / , ๐ข initial state ๐ฆ / ๐ / ๐ถ(๐ / , ๐) โ Reachtube ๐(๐ถ(๐ฆ / , ๐), ๐) : all states ๐(๐ถ(๐ฆ / , ๐), ๐) reachable from initial set ๐ถ(๐ฆ / , ๐) โ โ - up to time ๐ Unsafe time Safety verification problem: given initial set ๐ถ(๐ฆ / , ๐), unsafe set U , time bound ๐, d ecide ๐ ๐ถ(๐ฆ / , ๐), ๐ โฉ U = โ ? EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 4
Simulation-driven verification strategy Grey tube: Unknown Green tube: Safe Given start and unsafe ฮ ๐ Compute finite cover of initial set Relative Simulate from the center ๐ฆ / of each cover distance ๐ ๐ / , ๐ข Generalize simulation to reachtube so that ๐ / reachtube contains all trajectories from the cover ๐ถ(๐ / , ๐) ๐(๐ถ(๐ฆ / , ๐), ๐) Check intersection/containment with ๐ Refine time Union = over-approximation of reach set Key step: ๐ ๐ฆ / , ๐ข -> ๐ ๐ถ ๐ฆ / , ๐ , ๐ EMSOFT 2016 โ Locally optimal 5 reachability โ Chuchu Fan โ UIUC
Main problem: How to quantify generalization? Discrepancy formalizes generalization : Discrepancy is a continuous function ๐พ that bounds the distance between neighboring ๐ ๐ฆ D , ๐ข trajectories ๐ฆ D ๐ ๐ฆ B , ๐ข โ ๐(๐ฆ D , ๐ข) โค ๐พ ๐ฆ B โ ๐ฆ D , ๐ข , ๐ฆ B ๐พ(โ๐ฆ B โ ๐ฆ D โ, ๐ข) ๐ ๐ฆ B , ๐ข From a single simulation of ๐(๐ฆ B , ๐ข) and discrepancy ๐พ we can over-approximate the reachtube EMSOFT 2016 โ Locally optimal Feedback Friday Presentation 6 reachability โ Chuchu Fan โ UIUC
A simple example of discrepancy function If ๐(๐ฆ) has a Lipschitz constant ๐ : โ๐ฆ, ๐ง โ โ - , ๐ ๐ฆ โ ๐ ๐ง โค ๐ ๐ฆ โ ๐ง ๐ ๐ฆ D , ๐ข ๐ฆ D Example: ๐ฆฬ = โ2๐ฆ, Lipschitz constant ๐ = 2 ๐ฆ B then a (bad) discrepancy function is ๐พ(โ๐ฆ B โ ๐ฆ D โ, ๐ข) ๐ ๐ฆ B , ๐ข ๐ฆ B โ ๐ฆ D ๐ MN = ๐พ ๐ ๐ฆ B , ๐ข โ ๐(๐ฆ D , ๐ข) โค ๐ฆ B โ ๐ฆ D , ๐ข EMSOFT 2016 โ Locally optimal Feedback Friday Presentation 7 reachability โ Chuchu Fan โ UIUC
A simple example of discrepancy function ๐ ๐ฆ D , ๐ข ๐ฆ D ๐ฆ B ๐พ(โ๐ฆ B โ ๐ฆ D โ, ๐ข) ๐ ๐ฆ B , ๐ข ๐ฆฬ = โ2๐ฆ, Lipschitz constant ๐ = 2, ๐ = 1 EMSOFT 2016 โ Locally optimal Feedback Friday Presentation 8 reachability โ Chuchu Fan โ UIUC
What is a good discrepancy ? General: Applies to general nonlinear ๐ ๐ ๐ฆ D , ๐ข Accurate: Small error in ๐พ ๐ฆ D ๐ฆ B Effective: Computing ๐พ is fast (in practice) ๐พ(โ๐ฆ B โ ๐ฆ D โ, ๐ข) ๐ ๐ฆ B , ๐ข EMSOFT 2016 โ Locally optimal Feedback Friday Presentation 9 reachability โ Chuchu Fan โ UIUC
ฬ Matrix measures can give tight discrepancy Theorem [Sontag 10]: For any ๐ โ โ - , if all trajectories ๐ starting from the line between any two initial states ๐ฆ B and ๐ฆ D ๐ฆ B โ ๐ฆ D ๐ QN , ๐ ๐ฆ D , ๐ข ๐ฆ D remains in ๐ then: ๐ ๐ฆ B , ๐ข โ ๐ ๐ฆ D , ๐ข โค where c = max $โ๐ ๐ ๐พ ๐ฆ and ๐ฆ B ๐ ๐ฆ B , ๐ข ๐ ๐พ ๐ฆ is a matrix measure of Jacobian = ๐ค D + ๐ฅ D Example: ๐คฬ XY Z $ ๐พ ๐ฆ = is the Jacobian matrix of f ๐ฅ โ๐ค X$ [ ๐ค = 2๐ค 2๐ฅ Jacobian: ๐พ This ๐ can be < 0, usually << Lipschitz constant ๐ฅ โ1 0 EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 10
๏ฟฝ Matrix measure for ๐ต โ โ -ร- Matrix norm Matrix measure [Dahlquist 59]: ๐ฝ + ๐ข๐ต โ ๐ฝ ๐ต๐ฆ ๐ ๐ต = lim ๐ต = max ๐ข ๐ฆ Nโ/ f $n/ klk m ๐ ij$ (๐ต o ๐ต) 2-norm: ๐(๐ต) = ๐ ij$ ๐ต D = D EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 11
๏ฟฝ ฬถ Definition of matrix measures ๐ = max $โ๐ ๐ ๐พ ๐ฆ โ For any matrix ๐ต โ โ -ร- ๐ฝ + ๐ข๐พ ๐ฆ โ ๐ฝ โก ๐ = max $โ๐ lim Matrix norm Matrix measure [Desoer 72]: โก ๐ข Nโ/ f From original ๐ฝ + ๐ข๐ต โ ๐ฝ ๐ต๐ฆ problem to an SDP โฆ ๐ ๐ต = lim ๐ต = max ๐ข ๐ฆ problem in the Nโ/ f $n/ next slides min ๐ klk m ๐ ij$ (๐ต o ๐ต) ๐ต D = max 2-norm: ๐(๐ต) = ๐ ij$ D s.t. โ๐ต โ ๐ ๐ , ๐พ , ๐๐ต + ๐ต o ๐ โผ 2๐๐ฝ ๐ โป 0 EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 12
Baseline algorithm with 2-norm [Fan and Mitra ATVA15] Choosing ordinary matrix 2-norm, ๐ ๐พ ๐ฆ becomes: ๐พ ๐ฆ + ๐พ o ๐ฆ ๐ ij$ 2 [ATVA15]uses eigenvalue of center Jacobian matrix and perturbation bound to maximize this quantity over ๐ [CAV15] application to Powertrain verification problem [Jin 16] [CAV16] tool C2E2 implementing this algorithm EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 13
Coordinate transformation makes reachtube tighter Under 2-norm, approximations are represented by spheres Using linear coordinate transformations of state, we ๐ ๐ฆ D , ๐ข can get tighter over-approximations with ellipsoids ๐ฆ D Under coordinate transformation ๐ : matrix measure ๐ฆ B ๐ ๐ฆ B , ๐ข is ๐ | ๐ต = ๐(๐๐ต๐ }B ) ๐พ(โ๐ฆ B โ ๐ฆ D โ, ๐ข) EMSOFT 2016 โ Locally optimal Feedback Friday Presentation 14 reachability โ Chuchu Fan โ UIUC
Coordinate transformation makes reachtube tighter Plug in โ ๐ = max $โ๐ ๐ ๐พ ๐ฆ Under 2-norm approximations are represented by definition [Original problem] spheres ๐ฝ + ๐ข๐พ ๐ฆ โ ๐ฝ โก โก ๐ = max $โ๐ lim ๐ข Using linear coordinate transformations of state, we Nโ/ f ๐ ๐ฆ D , ๐ข can get tighter over-approximations with ellipsoids ๐ฆ D ๐๐พ ๐ฆ ๐ }B + (๐ }B ) o ๐พ ๐ฆ ๐ o โข โก ๐ = max $โ๐ ๐ ij$ Under coordinate transformation ๐ : matrix measure ๐ฆ B 2 ๐พ(โ๐ฆ B โ ๐ฆ D โ, ๐ข) ๐ ๐ฆ B , ๐ข is ๐ | ๐ต = ๐(๐๐ต๐ }B ) [Using coordinate transformation] EMSOFT 2016 โ Locally optimal Feedback Friday Presentation 15 reachability โ Chuchu Fan โ UIUC
Approximating J(x) with an ๐ = max $โ๐ ๐ ๐พ ๐ฆ interval matrix ๐ฝ + ๐ข๐พ ๐ฆ โ ๐ฝ โก ๐ = max $โ๐ lim ๐ข Nโ/ f ๐๐พ ๐ฆ ๐ }B + (๐ }B ) o ๐พ ๐ฆ ๐ o ๐ is a compact set โก ๐ = max $โ๐ ๐ ij$ 2 Each ๐พ โขโ : ๐ โ โ is continuous and has upper (๐ฃ โขโ ) and lower bounds (๐ โขโ ) Compute interval matrix ๐(๐ , ๐พ) = ๐ [โ,โ] โฏ [โ,โ] โฎ [๐ โขโ , ๐ฃ โขโ ] โฎ ๐ฆ D ๐ ๐ฆ D , ๐ข [โ,โ] โฏ [โ,โ] ๐ฆ B ๐พ(๐ฆ) ๐ ๐ฆ B , ๐ข For all ๐ฆ โ ๐ , ๐พ ๐ฆ โ ๐(๐ , ๐พ) EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 16
Approximating J(x) with an interval matrix ๐ = max $โ๐ ๐ ๐พ ๐ฆ โ [Original problem] ๐ ๐ is a compact ๐ฝ + ๐ข๐พ ๐ฆ โ ๐ฝ โก โก ๐ = max $โ๐ lim ๐ฆ D ๐ข ๐ ๐ฆ D , ๐ข Nโ/ f Each ๐พ โขโ : ๐ โ โ is continuous and therefore has upper (๐ฃ โขโ ) and lower bounds (๐ โขโ ) over ๐ ๐ฆ B ๐๐พ ๐ฆ ๐ }B + (๐ }B ) o ๐พ ๐ฆ ๐ o ๐พ(๐ฆ) ๐ ๐ฆ B , ๐ข โข โก ๐ = max $โ๐ ๐ ij$ 2 [โ,โ] โฏ [โ,โ] [Using coordinate transformation] โฎ [๐ โขโ , ๐ฃ โขโ ] โฎ ๐(๐ , ๐พ) = ๐๐ต๐ }B + (๐ }B ) o ๐ต๐ o โฃ [โ,โ] โฏ [โ,โ] โ kโ๐ ๐ ,โ ๐ ij$ max 2 [Bound ๐พ(๐ฆ) with interval matrix] EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 17
๐ = max $โ๐ ๐ ๐พ ๐ฆ Make it a semi-definite problem ๐ฝ + ๐ข๐พ ๐ฆ โ ๐ฝ โก ๐ = max $โ๐ lim ๐ข Nโ/ f ๐๐พ ๐ฆ ๐ }B + (๐ }B ) o ๐พ ๐ฆ ๐ o โก ๐ = max $โ๐ ๐ ij$ 2 ๐๐ต๐ }B + (๐ }B ) o ๐ต๐ o โ kโ๐ ๐ ,โ ๐ ij$ max |k| โโ l(| โโ ) m k| m 2 kโ๐ ๐ ,โ ๐ ij$ max D ๐ โก min ๐ ๐ฆ B โ ๐ฆ D โข ๐ QN โ๐ต โ ๐ ๐ , ๐พ ๐๐ต๐ }B + (๐ }B ) o ๐ต๐ o โผ 2๐ ๐ฝ ๐ o ๐๐ต ๐ o + ๐ต๐ o ๐ โผ 2๐๐ฝ ๐ o ๐ o ๐ s.t. ๐ ๐ ๐ฆ D ๐ ๐ฆ D , ๐ข { { ๐ ๐ ๐ฆ B โก min ๐ ๐ ๐ฆ B , ๐ข s.t. โ๐ต โ ๐ ๐ , ๐พ , ๐๐ต + ๐ต o ๐ โผ 2๐๐ฝ EMSOFT 2016 โ Locally optimal reachability โ Chuchu Fan โ UIUC 18
Recommend
More recommend