locality and subsumption testing in el and some of its
play

Locality and Subsumption Testing in EL and some of its extensions - PowerPoint PPT Presentation

Locality and Subsumption Testing in EL and some of its extensions Viorica Sofronie-Stokkermans Max-Planck-Institut f ur Informatik Saarbr ucken AiML 2008, September 912, 2008, Nancy 1 Motivation Description logics used for KR in


  1. Locality and Subsumption Testing in EL and some of its extensions Viorica Sofronie-Stokkermans Max-Planck-Institut f¨ ur Informatik Saarbr¨ ucken AiML 2008, September 9–12, 2008, Nancy 1

  2. Motivation Description logics – used for KR in databases/ontologies Provide a logical basis for modeling and reasoning about: • objects • classes of objects (concepts) • relationshops between objects (links, roles) Wide variety of description logics (various degrees of expressivity) This talk: Tractable description logic: EL , EL + and extensions [Baader’03–] used e.g. in medical ontologies (SNOMED) 2

  3. Motivation Description logics – used for KR in databases/ontologies Focus: Tractable description logic: EL , EL + and extensions [Baader’03–] used e.g. in medical ontologies (SNOMED) Main contributions of this paper: • Alternative proof of tractability of EL , EL + based on a notion of locality �→ a hierarchical reduction to SAT in the case of EL �→ reduction to SAT of ground Horn formulae in the case of EL + • Identify tractable extensions of EL and EL + �→ with n -ary roles and/or numerical domains. 3

  4. Overview • Introduce EL and EL + and the deduction problems (subsumption w.r.t. a TBox resp. CBox) • Algebraic semantics TBox/CBox subsumption �→ u.w.p. for SLat ∪ Mon(Σ)( ∪ Ax) • Local theories and local theory extensions • Locality results for SLat ∪ Mon(Σ)( ∪ Ax) • Tractable extensions of EL , EL + 4

  5. Overview • Introduce EL and EL + and the deduction problems (subsumption w.r.t. a TBox resp. CBox) • Algebraic semantics TBox/CBox subsumption �→ u.w.p. for SLat ∪ Mon(Σ)( ∪ Ax) • Local theories and local theory extensions • Locality results for SLat ∪ Mon(Σ)( ∪ Ax) • Tractable extensions of EL , EL + 5

  6. EL : Generalities Concepts: • primitive concepts N C E • complex concepts (built using concept constructors ⊓ , r ) Roles: N R • C ∈ N C �→ C I ⊆ D I Interpretations: I = ( D I , · I ) • r ∈ N R �→ r I ⊆ D I × D I Constructor name Syntax Semantics C I 1 ∩ C I conjunction C 1 ⊓ C 2 2 y (( x , y ) ∈ r I and y ∈ C I ) } E E existential restriction r . C { x | 6

  7. EL : Generalities • primitive concepts N C Concepts: E • complex concepts (built using concept constructors ⊓ , r ) Roles: N R • C ∈ N C �→ C I ⊆ D I Interpretations: I = ( D I , · I ) • r ∈ N R �→ r I ⊆ D I × D I Problem: Given: TBox (set T of concept inclusions C i ⊑ D i ) and concepts C , D Task: test whether C ⊑ T D , then C I ⊆ D I C I ⊆ D I i.e. whether for all I if i i A C i ⊑ D i ∈ T Decidable in PTIME [Baader02] (graphs/simulation, transl. to Datalog, ...) 7

  8. EL : Example Primitive concepts: protein, process, substance Roles: catalyzes, produces E Terminology: enzyme = protein ⊓ catalyzes.reaction E (TBox) catalyzer = catalyzes.process E reaction = process ⊓ produces.substance Query: enzyme ⊑ catalyzer? 8

  9. Algebraic semantics for EL Translation of concept descriptions to terms: �→ C for any concept name C C C 1 ⊓ C 2 �→ C 1 ⊓ C 2 = C 1 ∧ C 2 E E r . C �→ r . C = f r ( C ) Algebraic semantics for EL . Assume that N C = { c 1 , . . . , c n } . The following are equivalent: (1) C ⊑ T D A ^ (2) BAO ∪ Jh( { f r | r ∈ N R } ) | = c 1 , . . . , c n (( C i ≤ D i ) → C ≤ D ) C i ⊑ D i ∈T A ^ (3) SLat ∪ Mon( { f r | r ∈ N R } ) | = c 1 , . . . , c n (( C i ≤ D i ) → C ≤ D ) C i ⊑ D i ∈T 9

  10. Algebraic semantics for EL Translation of concept descriptions to terms: �→ C for any concept name C C C 1 ⊓ C 2 �→ C 1 ⊓ C 2 = C 1 ∧ C 2 E E r . C �→ r . C = f r ( C ) Algebraic semantics for EL . Assume that N C = { c 1 , . . . , c n } . The following are equivalent: (1) C ⊑ T D A ^ (2) BAO ∪ Jh( { f r | r ∈ N R } ) | = c 1 , . . . , c n (( C i ≤ D i ) → C ≤ D ) C i ⊑ D i ∈T A ^ (3) SLat ∪ Mon( { f r | r ∈ N R } ) | = c 1 , . . . , c n (( C i ≤ D i ) → C ≤ D ) C i ⊑ D i ∈T 10

  11. EL : Algebraic semantics Primitive concepts: protein, process, substance Roles: catalyzes, produces E Terminology: enzyme = protein ⊓ catalyzes.reaction E (TBox) catalyzer = catalyzes.process E reaction = process ⊓ produces.substance Query: enzyme ⊑ catalyzer? SLat ∪ Mon | =enzyme = protein ⊓ catalyzes-some(reaction) ∧ catalyzer = catalyze-some(process) ∧ reaction = process ⊓ produces-some(substance) ⇒ enzyme ⊑ catalyzer A Mon : C , D ( C ⊑ D → catalyze-some( C ) ⊑ catalyze-some( D )) A C , D ( C ⊑ D → produces-some( C ) ⊑ produces-some( D )) 11

  12. EL + : generalities • primitive concepts N C Concepts: E • complex concepts (built using concept constructors ⊓ , r ) Roles: N R • C ∈ N C �→ C I ⊆ D I Interpretations: I = ( D I , · I ) • r ∈ N R �→ r I ⊆ D I × D I Problem: Given: CBox C = ( T , RI ), where T set of concept inclusions C i ⊑ D i ; RI set of role inclusions r ◦ s ⊑ t or r ⊑ t concepts C , D Task: test whether C ⊑ T D , and r I ◦ s I ⊆ t I then C I ⊆ D I C I ⊆ D I i.e. whether for all I if i i A A C i ⊑ D i ∈ T r ◦ s ⊑ t ∈ RI 12

  13. EL + : Example Primitive concepts: protein, process, substance Roles: catalyzes, produces, helps-producing E Terminology: enzyme = protein ⊓ catalyzes.reaction E (TBox) reaction = process ⊓ produces.substance Role inclusions: catalyzes ◦ produces ⊑ helps-producing E Query: enzyme ⊑ protein ⊓ helps-producing.substance ? 13

  14. Algebraic semantics for EL + Translation of concept descriptions to terms: �→ C for any concept name C C C 1 ⊓ C 2 �→ C 1 ⊓ C 2 = C 1 ∧ C 2 E E r . C �→ r . C = f r ( C ) A �→ Ax ( RI ) = { x f r ( f s ( x )) ≤ f t ( x ) | r ◦ s ⊆ t ∈ RI } RI Algebraic semantics for EL + Assume that N C = { c 1 , . . . , c n } . T.f.a.e. for any EL + C Box C = ( T , RI ) (1) C ⊑ C D A ^ (2) SLat ∪ Mon( { f r | r ∈ N R } ) ∪ Ax ( RI ) | = c 1 , . . . , c n (( C i ≤ D i ) → C ≤ D ) C i ⊑ D i ∈T 14

  15. EL + : Algebraic semantics Primitive concepts: protein, process, substance Roles: catalyzes, produces, helps-producing E Terminology: enzyme = protein ⊓ catalyzes.reaction E (TBox) reaction = process ⊓ produces.substance Role inclusions: catalyzes ◦ produces ⊑ helps-producing E Query: enzyme ⊑ protein ⊓ helps-producing.substance ? SLat ∪ Mon ∪ Ax ( RI ) | =enzyme = protein ⊓ catalyzes-some(reaction) ∧ reaction = process ⊓ produces-some(substance) ⇒ enzyme ⊑ protein ⊓ helps-producing-some(substance) A Mon : C , D ( C ⊑ D → catalyze-some( C ) ⊑ catalyze-some( D )) A C , D ( C ⊑ D → produces-some( C ) ⊑ produces-some( D )) A Ax ( RI ) : x (catalyzes-some(produces-some( x )) ≤ helps-producing( x )) 15

  16. Efficient reasoning in the algebraic models • TBox subsumption in EL �→ uniform word problem w.r.t. SLat ∪ Mon(Σ) • CBox subsumption in EL + �→ uniform word problem SLat ∪ Mon(Σ) ∪ Ax , where Ax consists of axioms of the type: A A x ( f ( x ) ≤ g ( x )) and x ( f ( g ( x )) ≤ h ( x )) The uniform word problem for SLat ∪ Mon(Σ)( ∪ Ax ) : decidable in PTIME Explanation: Local theories / local theory extensions 16

  17. Overview • Introduce EL and EL + and the deduction problems (subsumption w.r.t. a TBox resp. CBox) • Algebraic semantics TBox/CBox subsumption �→ u.w.p. for SLat ∪ Mon(Σ)( ∪ Ax) • Local theories and local theory extensions • Locality results for SLat ∪ Mon(Σ)( ∪ Ax) • Tractable extensions of EL , EL + 17

  18. Local theories Local theories [McAllester & Givan’92; Ganzinger’01] K set of equational Horn clauses K is local, if for ground clauses G , K ∪ G | = ⊥ iff K [ G ] ∪ G | = ⊥ [McAllester, Givan ’92, ’93] Local theories capture PTIME 18

  19. � � Local theories Local theories [McAllester & Givan’92; Ganzinger’01] K set of equational Horn clauses K is local, if for ground clauses G , K ∪ G | = ⊥ iff K [ G ] ∪ G | = ⊥ [Ganzinger’01] � Emb( K ) K local theory [Skolem’20] � � � ���������� � � [McAllester et al.’92,’93] � � [Evans’53,Burris’95] � � � � � Horn theory of K in PTIME 19

  20. Local theories Local theories [McAllester & Givan’92; Ganzinger’01] K set of equational Horn clauses K is local, if for ground clauses G , K ∪ G | = ⊥ iff K [ G ] ∪ G | = ⊥ Example: • Axiomatization of lattices [Skolem 1920] Locality: every poset embeds into a lattice (Dedekind-MacNeille completion) • Similar results for axiomatizations of semilattices • Several other examples (algebra [Burris95] ; verification: theories of lists ...) 20

  21. Local theories Local theories [McAllester & Givan’92; Ganzinger’01] K set of equational Horn clauses Compl: Pol. in size of G K is local, if for ground clauses G , G : f ( c )= f ( d ) Ex: K ∪ G | = ⊥ iff K [ G ] ∪ G | = ⊥ Mon f [ G ] : c ≤ d → f ( c ) ≤ f ( d ) Ψ closure operation on ground terms. Compl: Pol. in size of Ψ( G ) K is Ψ-local, if for ground clauses G , K ∪ G | = ⊥ iff K [Ψ( G )] ∪ G | = ⊥ Compl: Pol. in size of G T 0 ⊆ K is stably local, if for ground clauses G , G : f ( c )= f ( d ) Ex: = ⊥ iff T 0 ∪ K [ G ] ∪ G | T 0 ∪ K ∪ G | = ⊥ Mon [ G ] :c ≤ d → f ( c ) ≤ f ( d ) f f ( c ) ≤ d → f ( f ( c )) ≤ f ( d ) 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend