lns
play

LNS Laboratory for Nuclear Science 1 There is a large discrepancy - PowerPoint PPT Presentation

Polarization Observables using Positron Beams Axel Schmidt MIT JPos17, September 12, 2017 LNS Laboratory for Nuclear Science 1 There is a large discrepancy in proton form factor data. 2 Unpolarized d/d 1 . 5 G E /G M 1 0 . 5


  1. Polarization Observables using Positron Beams Axel Schmidt MIT JPos17, September 12, 2017 LNS Laboratory for Nuclear Science 1

  2. There is a large discrepancy in proton form factor data. 2 Unpolarized dσ/d Ω 1 . 5 µG E /G M 1 0 . 5 Polarization asymmetries 0 0 1 2 3 4 5 6 7 8 9 Q 2 [GeV/c] 2 2

  3. Two-photon exchange might be the cause. ? G E ( Q 2 ) , G M ( Q 2 ) − → G E ( Q 2 ) , G M ( Q 2 ) , δ ˜ G E ( Q 2 , ǫ ) , δ ˜ G M ( Q 2 , ǫ ) , ˜ F 3 ( Q 2 , ǫ ) , ˜ F 4 ( Q 2 , ǫ ) , ˜ F 5 ( Q 2 , ǫ ) , ˜ F 6 ( Q 2 , ǫ ) 3

  4. Two-photon exchange might be the cause. ? G E ( Q 2 ) , G M ( Q 2 ) − → G E ( Q 2 ) , G M ( Q 2 ) , δ ˜ G E ( Q 2 , ǫ ) , δ ˜ G M ( Q 2 , ǫ ) , ˜ F 3 ( Q 2 , ǫ ) 4

  5. Two-photon exchange might be the cause. ? G E ( Q 2 ) , G M ( Q 2 ) − → G E ( Q 2 ) , G M ( Q 2 ) , δ ˜ G E ( Q 2 , ǫ ) , δ ˜ G M ( Q 2 , ǫ ) , ˜ F 3 ( Q 2 , ǫ ) σ e + p G M + ǫν − 4 ǫ G E + ν � � � � δ ˜ M 2 ˜ δ ˜ M 2 ˜ + O ( α 4 ) = 1 − 4 G M Re F 3 τ G E Re F 3 σ e − p 5

  6. Recent σ e + p /σ e − p measurements were not a slam dunk. TPE is there. . . . but it’s small. Higher Q 2 ? Afanasev, Blunden, Hasell, and Raue, Prog. Nucl. Part. Phys. (2017) 6

  7. The experimental goal should be to validate theory from multiple angles. A precise experimental determination of TPE will be a challenge. We need to validate theories that allow interpolation/extrapolation. Constraints should come from multiple channels. 7

  8. Constraining TPE using Polarization 1 Polarization transfer with e + Systematically clean Statistics prohibitive 2 Beam-normal single-spin asymmetry Really statistics prohibitive 3 Target-normal single-spin asymmetry Feasible 8

  9. Polarization transfer is a better way to measure the proton form factor ratio. Measurements are performed at one kinematic setting. Radiative corrections are small. Measure a ratio rather than a cross section. 9

  10. What polarization is transfered to the proton? e' e � 2 ǫ ( 1 − ǫ ) G E G M P t = − hP e G 2 M + ǫ τ G 2 � τ τ ( 1 + ǫ ) G E E P t / P l = √ G 2 2 ǫ G M 1 − ǫ 2 P l = hP e M M + ǫ G 2 τ G 2 E 10

  11. What polarization is transfered to the proton? e' e � 2 ǫ ( 1 − ǫ ) G E G M P t = − hP e G 2 M + ǫ τ G 2 � τ τ ( 1 + ǫ ) G E E P t / P l = √ G 2 2 ǫ G M 1 − ǫ 2 P l = hP e M M + ǫ G 2 τ G 2 E 11

  12. Polarization can be measured with a focal plane polarimeter. Focal Plane Polarimeter Drift Chambers Trigger Scintillators Rescatterer Drift Chambers Dipole 12

  13. The FPP converts transverse polarization into an azimuthal distribution. 0.10 0.10 0.08 ) FPP1 FPP2 - + f 0.05 0.05 + )/(f 0.00 0.00 0.06 - - f − 0.05 0.05 + (f < > = 0.153 ε − 0.10 0.10 0.04 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0.10 0.10 0.02 ) - + f 0.05 0.05 + )/(f 0.00 0.00 0.00 - - f − 0.05 0.05 + (f < ε > = 0.638 − 0.10 0.10 − 0.02 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0.10 0.10 0.04 − ) - + f 0.05 0.05 + )/(f 0.00 0.00 - - f − 0.06 − 0.05 0.05 + (f < > = 0.790 ε − 0.10 0.10 − 0.08 0 1 2 3 4 5 6 1 2 3 4 5 6 0 1 2 3 4 5 6 (rad) (rad) ϕ ϕ fpp fpp 13

  14. History of PT measurements 1 . 2 MIT-Bates (1999) Hall A (2001) 1 Mainz (2001) 0 . 8 µ p G Ep 0 . 6 G Mp 0 . 4 0 . 2 0 0 1 2 3 4 5 6 7 8 9 Q 2 [GeV 2 ] 14

  15. History of PT measurements 1 . 2 Hall C (2006) BLAST (2007) 1 0 . 8 µ p G Ep 0 . 6 G Mp 0 . 4 0 . 2 0 0 1 2 3 4 5 6 7 8 9 Q 2 [GeV 2 ] 15

  16. History of PT measurements 1 . 2 Hall A (2006) Hall C (2006) 1 Hall A (2007) Hall A (2010) Hall A (2011) 0 . 8 µ p G Ep 0 . 6 G Mp 0 . 4 0 . 2 0 0 1 2 3 4 5 6 7 8 9 Q 2 [GeV 2 ] 16

  17. History of PT measurements 1 . 2 G E p -I (Hall A) G E p -II (Hall A) 1 G E p -III (Hall C) G E p - 2 γ (Hall C) 0 . 8 µ p G Ep 0 . 6 G Mp 0 . 4 0 . 2 0 0 1 2 3 4 5 6 7 8 9 Q 2 [GeV 2 ] 17

  18. Polarization transfer is sensitive to TPE. � P t 2 ǫ G E = × [ 1 + . . . P l τ ( 1 + ǫ ) G M 18

  19. Polarization transfer is sensitive to TPE. � P t 2 ǫ G E = × [ 1 + . . . P l τ ( 1 + ǫ ) G M � δ ˜ � G M + 1 G E + ν − 2 � ǫν � � � δ ˜ m 2 ˜ δ ˜ ( 1 + ǫ ) m 2 ˜ + Re Re Re F 3 G M + F 3 G M G E G M + O ( α 4 ) + . . . ] 19

  20. Polarization transfer is sensitive to TPE. � P t 2 ǫ G E = × [ 1 + . . . P l τ ( 1 + ǫ ) G M � δ ˜ � G M + 1 G E + ν − 2 � ǫν � � � δ ˜ m 2 ˜ δ ˜ ( 1 + ǫ ) m 2 ˜ + Re Re Re F 3 G M + F 3 G M G E G M + O ( α 4 ) + . . . ] Different dependence from σ ( e + p ) /σ ( e − p ) ! 20

  21. Without TPE, G E G M should be constant with ǫ . � G E τ ( 1 + ǫ ) P t = × [ 1 + . . . ? 2 ǫ G M P l Any ǫ dependence is a signature of TPE. 21

  22. The GEp-2 γ experiment looked for TPE. 40 days, data taken in 2007–08, Hall C Q 2 = 2 . 5 GeV 2 / c 2 Meziane et al., PRL 106, 132501 (2011) A. J. R. Puckett et al., arXiv:1707.08587v1 [nucl-ex] (2017) 22

  23. What do positrons get you? Largest systematics in PT: Proton polarimetry Spin precession in spectrometer fields Alignment of the polarimeter ( P l ↔ P t ) 23

  24. What do positrons get you? Largest systematics in PT: Proton polarimetry Spin precession in spectrometer fields Alignment of the polarimeter ( P l ↔ P t ) By taking the ratio: ( P t ( e + ) / P l ( e + )) / ( P t ( e − ) / P l ( e − )) Proton polarimetry offsets cancel. Point-to-point biases eliminated ǫ -dependence at fixed Q 2 is a signature. Statistics limited measurements! 24

  25. What do positrons get you? Largest systematics in PT: Proton polarimetry Spin precession in spectrometer fields Alignment of the polarimeter ( P l ↔ P t ) By taking the ratio: ( P t ( e + ) / P l ( e + )) / ( P t ( e − ) / P l ( e − )) Proton polarimetry offsets cancel. Point-to-point biases eliminated ǫ -dependence at fixed Q 2 is a signature. Statistics limited measurements! Positrons can’t help you get the form factors (biases have the same sign). 25

  26. Figure-of-merit � d σ F.o.M. ∝ AP e d ΩΩ L T ε A : polarimeter analyzing power − → same P e : beam polarization ≈ 80 % − → ≈ 60 % L : luminosity ≈ 80 µ A − →≈ 100 nA T : run time ??? ε : polarimeter efficiency − → same Factor 38 increase in uncertainty! 26

  27. Imagined set-up Big Cal II SHMS e + / e – beam Big Cal HMS BigCal from GEp-III, GEp-2 γ Protons in SHMS/HMS Non-magnetic lepton detector (BigCal) SHMS for low- ǫ , in parallel with other kinematics in HMS 27

  28. Imagined set-up Big Cal II SHMS e + / e – beam Big Cal HMS BigCal from GEp-III, GEp-2 γ Protons in SHMS/HMS Non-magnetic lepton detector (BigCal) SHMS for low- ǫ , in parallel with other kinematics in HMS 28

  29. Kinematics 5 Bates Mainz Hall A 4 Hall C Q 2 [GeV 2 ] 3 2 1 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 ǫ 29

  30. Q 2 = 1 . 15 GeV 2 Hall A (Gayou et al.) 1 . 2 Hall C (MacLachlan et al.) GEp-I, Hall A (Punjabi et al.) 1 . 1 Projected 1 0 . 9 µ p G E /G M 0 . 8 0 . 7 20 days of e + 16+16 4+4 0 . 6 20 days of e − 40 days total 0 . 5 0 0 . 2 0 . 4 0 . 6 0 . 8 1 ǫ 30

  31. Q 2 = 1 . 15 GeV 2 Hall A (Gayou et al.) 1 . 2 Hall C (MacLachlan et al.) GEp-I, Hall A (Punjabi et al.) 1 . 1 Projected 1 0 . 9 µ p G E /G M 0 . 8 0 . 7 45 days of e + 36+36 4+4 0 . 6 45 days of e − 90 days total 0 . 5 0 0 . 2 0 . 4 0 . 6 0 . 8 1 ǫ 31

  32. Q 2 = 1 . 15 GeV 2 Projected: Q 2 = 1 . 15 GeV 2 1 . 4 1 . 2 e + /e − 1 0 . 8 90 days 72 days 18 days 90 days total 0 . 6 0 0 . 2 0 . 4 0 . 6 0 . 8 1 ǫ 32

  33. To summarize: TPE can show up in polarization transfer. e + / e − is a clean way to measure it. Systematics are on the proton side. Non-magnetic lepton detection Getting enough stats is the hard part. 33

  34. Single-spin transverse asymmetries are sensitive to the imaginary part of TPE. Target-normal: � 2 ǫ ( 1 + ǫ ) A n = √ τ � × � M + ǫ G 2 τ G 2 E � G E + ν � 2 ǫν �� � � δ ˜ M 2 ˜ δ ˜ ˜ + O ( α 4 ) − G M Im + G E Im G M + F 3 F 3 M 2 ( 1 + ǫ ) Beam Normal: � B n = 4 mM 2 ǫ ( 1 − ǫ )( 1 + τ ) × M + ǫ Q 2 � G 2 τ G 2 � E � � ν � � ν �� ˜ ˜ ˜ ˜ + O ( α 4 ) − τ G M Im F 3 + F 5 − G E Im F 4 + F 5 M 2 ( 1 + τ ) M 2 ( 1 + τ ) 34

  35. Transverse asymmetries do not violate parity. e' e 35

  36. Transverse asymmetries do not violate parity. e' e e e' 36

  37. Transverse asymmetries do not violate parity. e' e e e' 37

  38. Transverse asymmetries do not violate parity. Target-normal Beam-normal Suppressed by m e / Q ≈ 10 − 4 –10 − 6 ≈ 10 − 3 False asym. in PV Previously measured Previously measured by: 1970’s, looking for SAMPLE T-violation G0 HERMES (including with e + ) Mainz A4 3 He, Hall A HAPPEX/PREX QWeak (prelim) � d σ F.o.M = P d Ω Ω L T 38

  39. Previous beam-normal asymmetry data 0 . 8 SAMPLE 0 . 7 Mainz A4 G0 0 . 6 HAPPEX QWeak 0 . 5 Q 2 [GeV 2 ] 0 . 4 0 . 3 0 . 2 0 . 1 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 ǫ 39

  40. Low- ǫ beam-normal asymmetry data 200 SAMPLE 150 G0 G0 ( 2 H ) 100 Mainz A4 Mainz A4 ( 2 H ) 50 A n [ppm] 0 − 50 − 100 − 150 − 200 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 Q 2 [GeV 2 ] 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend