linear in lower bounds in the local model
play

Linear-in- lower bounds in the LOCAL model Mika Gs, University of - PowerPoint PPT Presentation

Linear-in- lower bounds in the LOCAL model Mika Gs, University of Toronto Juho Hirvonen , Aalto University & HIIT Jukka Suomela, Aalto Univesity & HIIT PODC 16.7.2014 This work The first linear-in- lower bound for a


  1. Linear-in- Δ lower bounds in the LOCAL model Mika Göös, University of Toronto Juho Hirvonen , Aalto University & HIIT Jukka Suomela, Aalto Univesity & HIIT � PODC 16.7.2014

  2. This work The first linear-in- Δ lower bound for a natural graph problem in the LOCAL model Fractional maximal matching: - There is no o ( Δ )-algorithm, independent of n - There is an O ( Δ )-algorithm, independent of n ( Δ = maximum degree, n = number of vertices) 2

  3. Matching 0 0 0 1 1 0 Matching assigns weight 1 to matched edges and weight 0 to the rest 3

  4. Fractional matching 0.3 0.4 0.1 0.3 0.4 0.1 FM is a linear relaxation of matching: weights of the incident edges sum up to at most 1 4

  5. Maximal fractional matching 0.3 0.4 0.1 0.3 0.4 0.1 A node is saturated , if the sum of the weights of the incident edges is equal to one 5

  6. Maximal fractional matching 0.3 0.3 0.4 0.4 0.1 0.3 0.1 0.2 0.4 0.1 0.4 0.1 The fractional matching is maximal , if no two unsaturated nodes are adjacent 6

  7. Standard LOCAL model - Synchronous communication - No bandwidth restrictions - Running time = number of communication rounds - Both deterministic and randomized algorithms 7

  8. This work The first linear-in- Δ lower bound for a natural graph problem in the LOCAL model Fractional maximal matching: - There is no o ( Δ )-algorithm, independent of n - There is an O ( Δ )-algorithm, independent of n ( Δ = maximum degree, n = number of vertices) 8

  9. Prior work Coordination problems: - Maximal matching - Maximal independent set - ( Δ +1)-coloring Algorithms O ( Δ + log* n ) also O(polylog( n ) Lower bounds Ω (log* n ) and Ω (log Δ ) [Linial ’92] [Kuhn et al. ’05] 9

  10. Prior work Coordination problems: - Maximal matching - Maximal independent set - ( Δ +1)-coloring Algorithms O ( Δ + log* n ) also O(polylog( n ) Lower bounds Ω (log* n ) and Ω (log Δ ) [Linial ’92] [Kuhn et al. ’05] 10

  11. The Proof

  12. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 12

  13. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 13

  14. Edge coloring (EC) EC ↝ PO ↝ OI ↝ ID ↝ R 14

  15. Port-numbering and orientation (PO) 1 2 1 2 3 3 2 1 1 2 4 1 EC ↝ PO ↝ OI ↝ ID ↝ R 15

  16. Port-numbering and orientation (PO) EC ↝ PO ↝ OI ↝ ID ↝ R 16

  17. Unique Identifiers (ID) 1 18 19 71 8 EC ↝ PO ↝ OI ↝ ID ↝ R 17

  18. Order Invariant (OI) 1 18 2 15 ≈ 19 71 8 31 41 5 EC ↝ PO ↝ OI ↝ ID ↝ R 18

  19. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 19

  20. Loopy graphs k =2 k =3 A graph is k-loopy , if it has at least k self-loops at each node EC ↝ PO ↝ OI ↝ ID ↝ R 20

  21. Loopy graphs Loopy graphs are a compact representation of simple graphs with lots of symmetry EC ↝ PO ↝ OI ↝ ID ↝ R 21

  22. Loopy graphs A loopy graph can be unfolded to get a simple graph EC ↝ PO ↝ OI ↝ ID ↝ R 22

  23. Loopy graphs A loopy graph can be unfolded to get a simple graph EC ↝ PO ↝ OI ↝ ID ↝ R 23

  24. Loopy graphs loopy graphs ≈ infinite trees EC ↝ PO ↝ OI ↝ ID ↝ R 24

  25. Loopy graphs Key observation: a maximal fractional matching must saturate all nodes of a loopy graph! EC ↝ PO ↝ OI ↝ ID ↝ R 25

  26. EC lower bound G H EC ↝ PO ↝ OI ↝ ID ↝ R 26

  27. EC lower bound GG GH HH EC ↝ PO ↝ OI ↝ ID ↝ R 27

  28. EC lower bound EC ↝ PO ↝ OI ↝ ID ↝ R 28

  29. The Proof A short guide to the proof - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 29

  30. EC ↝ PO

  31. EC ↝ PO Assume we have an o( Δ )-time algorithm A for maximal edge packing in the PO model EC ↝ PO ↝ OI ↝ ID ↝ R 31

  32. EC ↝ PO Transform EC graph into PO graph by replacing each edge with two oriented edges EC ↝ PO ↝ OI ↝ ID ↝ R 32

  33. EC ↝ PO 0.3 0.25 0.45 0.45 0.15 0.2 0.1 0 0.1 Simulate the PO-algorithm A and combine the weights of the corresponding edges EC ↝ PO ↝ OI ↝ ID ↝ R 33

  34. EC ↝ PO We get an o( Δ )-algorithm in the EC-model, which is a contradiction EC ↝ PO ↝ OI ↝ ID ↝ R 34

  35. PO ↝ OI

  36. PO ↝ OI - Similar technology as Göös et al. (2012) - Now we do not need any approximation guarantees EC ↝ PO ↝ OI ↝ ID ↝ R 36

  37. PO ↝ OI Assume we have a PO-algorithm A We use port numbers and orientation to get a local ordering EC ↝ PO ↝ OI ↝ ID ↝ R 37

  38. PO ↝ OI v v G U (G) Take the universal cover of G EC ↝ PO ↝ OI ↝ ID ↝ R 38

  39. Canonically 53 31 45 52 ordered tree 39 51 13 25 37 44 50 41 14 38 49 15 29 40 30 43 48 23 47 27 1 9 17 35 42 46 2 36 3 10 16 21 28 34 4 24 33 22 5 11 19 26 32 6 20 7 12 18 8 EC ↝ PO ↝ OI ↝ ID ↝ R

  40. 53 Embed U (G) 31 45 52 39 51 13 25 37 44 50 41 14 38 49 15 29 40 30 43 48 23 47 27 1 9 17 35 42 46 v 2 36 3 10 16 21 28 34 4 24 33 22 5 11 19 26 32 6 20 7 12 18 8 EC ↝ PO ↝ OI ↝ ID ↝ R

  41. PO ↝ OI It is possible to make a PO-graph an OI-graph locally Use this to simulate A EC ↝ PO ↝ OI ↝ ID ↝ R 41

  42. OI ↝ ID

  43. OI ↝ ID Use the OI ↝ ID lemma of Naor and Stockmeyer (1995) (essentially Ramsey’s Theorem) The idea is to force any ID-algorithm A to behave like an OI-algorithm on some inputs EC ↝ PO ↝ OI ↝ ID ↝ R 43

  44. OI ↝ ID Trick: consider an algorithm A* that simulates A and outputs 1 at saturated nodes and 0 elsewhere to apply the Lemma This forces all nodes to be saturated in A in loopy neighborhoods Any change must propagate outside A ’s run time EC ↝ PO ↝ OI ↝ ID ↝ R 44

  45. The Proof A short guide - Step 0: Introduce models EC, PO, OI and ID - Step 1: Ω ( Δ )-lower bound in the EC-model - Step 2: Simulation result EC ↝ PO ↝ OI ↝ ID - Step 3: ID ↝ Randomized algorithms 45

  46. Randomized algorithms Idea: Reduce random algorithms back to deterministic ones Again use a lemma of Naor and Stockmeyer (1995) EC ↝ PO ↝ OI ↝ ID ↝ R 46

  47. Summary This work Fractional maximal matching has complexity Θ ( Δ ) Open questions What is the complexity of maximal matching ? What is the complexity of 2-colored maximal matching ? 47

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend