better time space lower bounds for sat and related
play

Better Time-Space Lower Bounds for SAT and Related Problems Ryan - PowerPoint PPT Presentation

Better Time-Space Lower Bounds for SAT and Related Problems Ryan Williams Carnegie Mellon University June 12, 2005 0-0 Introduction Few super-linear time lower bounds known for natural problems in NP (Existing ones generally use a restricted


  1. Proof of the speed-up theorem Let x be input, M be the small space machine to simulate Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to M ( x ) accepting 11

  2. Proof of the speed-up theorem Let x be input, M be the small space machine to simulate Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to M ( x ) accepting Let C j denote configuration of M ( x ) after j th step: bit string encoding head positions, workspace contents, finite control By space assumption on M , | C j | ∈ n o (1) 11-a

  3. Proof of the speed-up theorem Let x be input, M be the small space machine to simulate Goal: Write a clever sentence in first-order logic with k (alternating) quantifiers that is equivalent to M ( x ) accepting Let C j denote configuration of M ( x ) after j th step: bit string encoding head positions, workspace contents, finite control By space assumption on M , | C j | ∈ n o (1) M ( x ) accepts iff there is a sequence C 1 , C 2 , . . . , C t where • C 1 is the “initial” configuration, • C t is in “accept” state • For all i , C i leads to C i +1 in one step of M on input x . 11-b

  4. Proof of speed-up theorem: The case k = 2 M ( x ) accepts iff ( ∃ C 0 , C √ t , C 2 √ t , . . . , C t ) √ ( ∀ i ∈ { 1 , . . . , t } ) √ [ C i · t leads to C ( i +1) · t steps, C 0 is initial, C t is accepting] √ √ t in 12

  5. Proof of speed-up theorem: The case k = 2 M ( x ) accepts iff ( ∃ C 0 , C √ t , C 2 √ t , . . . , C t ) √ ( ∀ i ∈ { 1 , . . . , t } ) √ [ C i · t leads to C ( i +1) · t steps, C 0 is initial, C t is accepting] √ √ t in Runtime on an alternating machine: √ t · s ) = t 1 / 2+ o (1) time to write down the C j ’s • ∃ takes O ( • ∀ takes O (log t ) time to write down i √ • [ · · · ] takes O ( t · s ) deterministic time to check Two alternations, square root speedup 12-a

  6. Proof of speed-up theorem: The k = 3 case, first attempt For k = 2 , we had ( ∃ C 0 , C √ t , C 2 √ t , . . . , C t ) √ ( ∀ i ∈ { 0 , 1 , . . . , t } ) √ [ C i · √ t leads to C ( i +1) · √ t steps, C 0 initial, C t accepting] t in 13

  7. Proof of speed-up theorem: The k = 3 case, first attempt For k = 2 , we had ( ∃ C 0 , C √ t , C 2 √ t , . . . , C t ) √ ( ∀ i ∈ { 0 , 1 , . . . , t } ) √ [ C i · √ t leads to C ( i +1) · √ t steps, C 0 initial, C t accepting] t in √ Observation: The [ · · · ] is an O ( t ) time and small-space computation, thus we can speed it up by a square root as well 13-a

  8. Proof of speed-up theorem: The k = 3 case, first attempt For k = 2 , we had ( ∃ C 0 , C √ t , C 2 √ t , . . . , C t ) √ ( ∀ i ∈ { 0 , 1 , . . . , t } ) √ [ C i · √ t leads to C ( i +1) · √ t steps, C 0 initial, C t accepting] t in √ Observation: The [ · · · ] is an O ( t ) time and small-space computation, thus we can speed it up by a square root as well Straightforward way of doing this leads to: ( ∃ C 0 , C t 2 / 3 , C 2 · t 2 / 3 , . . . , C t )( ∀ i ∈ { 0 , 1 , . . . , t 1 / 3 } ) √ ( ∃ C i · t 2 / 3 + t 1 / 3 , C i · t 2 / 3 +2 · t 1 / 3 , . . . , C ( i +1) · t 2 / 3 )( ∀ j ∈ { 1 , . . . , t } ) [ C i · t 2 / 3 + j · t 1 / 3 leads to C i · t 2 / 3 +( j +1) · t 1 / 3 in t 1 / 3 steps, C 0 initial, C t accepting] 13-b

  9. k = 2 has one “stage” C 0 C t 1/2 C t 1/2 2 . . . . C t

  10. k = 3 has two “stages” k = 2 has one “stage” C C 0 C 2/3 t 0 C C C 2/3 2/3 t 1/3 + t t 1/2 t C C C 2 t 2/3 t 1/3 2/3 + 2 t 1/2 t 2 . . . . . . . . . . . . C C t C t 2 t 2/3

  11. Proof of speed-up theorem: Not quite enough for k = 3 The k = 3 sentence we gave uses four quantifiers, for only t 1 / 3 time (we want only three quantifier blocks) 15

  12. Proof of speed-up theorem: Not quite enough for k = 3 The k = 3 sentence we gave uses four quantifiers, for only t 1 / 3 time (we want only three quantifier blocks) Idea: Take advantage of the computation’s determinism – only one possible configuration at any step 15-a

  13. Proof of speed-up theorem: Not quite enough for k = 3 The k = 3 sentence we gave uses four quantifiers, for only t 1 / 3 time (we want only three quantifier blocks) Idea: Take advantage of the computation’s determinism – only one possible configuration at any step The acceptance condition for M ( x ) can be complemented : M ( x ) accepts iff ( ∀ C 0 , C √ t , C 2 √ t , . . . , C t rejecting ) √ ( ∃ i ∈ { 1 , . . . , t } ) √ [ C i · √ t does not lead to C i · √ √ t steps] t in t + “For all configuration sequences C 1 , . . . , C t where C t is rejecting, there exists a configuration C i that does not lead to C i +1 ” 15-b

  14. The k = 3 case We can therefore rewrite the k = 3 case, from ( ∃ C 0 , C t 2 / 3 , C 2 · t 2 / 3 , . . . , C t accepting )( ∀ i ∈ { 0 , 1 , . . . , t 1 / 3 } ) √ ( ∃ C i · t 2 / 3 + t 1 / 3 , C i · t 2 / 3 +2 · t 1 / 3 , . . . , C ( i +1) · t 2 / 3 )( ∀ j ∈ { 1 , . . . , t } ) [ C i · t 2 / 3 + j · t 1 / 3 leads to C i · t 2 / 3 +( j +1) · t 1 / 3 in t 1 / 3 steps] to: 16

  15. The k = 3 case We can therefore rewrite the k = 3 case, from ( ∃ C 0 , C t 2 / 3 , C 2 · t 2 / 3 , . . . , C t accepting )( ∀ i ∈ { 0 , 1 , . . . , t 1 / 3 } ) √ ( ∃ C i · t 2 / 3 + t 1 / 3 , C i · t 2 / 3 +2 · t 1 / 3 , . . . , C ( i +1) · t 2 / 3 )( ∀ j ∈ { 1 , . . . , t } ) [ C i · t 2 / 3 + j · t 1 / 3 leads to C i · t 2 / 3 +( j +1) · t 1 / 3 in t 1 / 3 steps] to: ( ∃ C 0 , C t 2 / 3 , C 2 · t 2 / 3 , . . . , C t accepting )( ∀ i ∈ { 0 , 1 , . . . , t 1 / 3 } ) ( ∀ C i · t 2 / 3 + t 1 / 3 , . . . , C ( i +1) · t 2 / 3 − t 1 / 3 , C ′ ( i +1) · t 2 / 3 � = C ( i +1) · t 2 / 3 ) √ ( ∃ j ∈ { 1 , . . . , t } ) [ C i · t 2 / 3 + j · t 1 / 3 does not lead to C i · t 2 / 3 +( j +1) · t 1 / 3 in t 1 / 3 steps] 16-a

  16. The k = 3 case We can therefore rewrite the k = 3 case, from ( ∃ C 0 , C t 2 / 3 , C 2 · t 2 / 3 , . . . , C t accepting )( ∀ i ∈ { 0 , 1 , . . . , t 1 / 3 } ) √ ( ∃ C i · t 2 / 3 + t 1 / 3 , C i · t 2 / 3 +2 · t 1 / 3 , . . . , C ( i +1) · t 2 / 3 )( ∀ j ∈ { 1 , . . . , t } ) [ C i · t 2 / 3 + j · t 1 / 3 leads to C i · t 2 / 3 +( j +1) · t 1 / 3 in t 1 / 3 steps] to: ( ∃ C 0 , C t 2 / 3 , C 2 · t 2 / 3 , . . . , C t accepting )( ∀ i ∈ { 0 , 1 , . . . , t 1 / 3 } ) ( ∀ C i · t 2 / 3 + t 1 / 3 , . . . , C ( i +1) · t 2 / 3 − t 1 / 3 , C ′ ( i +1) · t 2 / 3 � = C ( i +1) · t 2 / 3 ) √ ( ∃ j ∈ { 1 , . . . , t } ) [ C i · t 2 / 3 + j · t 1 / 3 does not lead to C i · t 2 / 3 +( j +1) · t 1 / 3 in t 1 / 3 steps] Voila! Three quantifier blocks. This is in Σ 3 TIME [ t 1 / 3+ o (1) ] (and similarly one can show it’s in Π 3 TIME [ t 1 / 3+ o (1) ] ) 16-b

  17. This can be generalized... For arbitrary k ≥ 3 , one simply guesses (existentially or universally) t 1 /k configurations at each stage 17

  18. This can be generalized... For arbitrary k ≥ 3 , one simply guesses (existentially or universally) t 1 /k configurations at each stage • Inverting quantifiers means the number of alternations only increases by one for every stage ( ∃ ∀ ) ( ∀ ∃ ) ( ∃ ∀ ) · · · 17-a

  19. This can be generalized... For arbitrary k ≥ 3 , one simply guesses (existentially or universally) t 1 /k configurations at each stage • Inverting quantifiers means the number of alternations only increases by one for every stage ( ∃ ∀ ) ( ∀ ∃ ) ( ∃ ∀ ) · · · • There are k − 1 stages of guessing t 1 /k configurations, then t 1 /k time to deterministically verify configurations 17-b

  20. Outline • Preliminaries • A Speed-Up Theorem • A Slow-Down Lemma √ 2 Lower Bound • Lipton and Viglas’ n • Our Inductive Argument • From n 1 . 66 to n 1 . 732 18

  21. A Slow-Down Lemma (Trading Alternations For Time) Main Idea: The assumption NTIME [ n ] ⊆ DTIME [ n c ] allows one to remove alternations from a computation, with a small time increase 19

  22. A Slow-Down Lemma (Trading Alternations For Time) Main Idea: The assumption NTIME [ n ] ⊆ DTIME [ n c ] allows one to remove alternations from a computation, with a small time increase Let t ( n ) ≥ n be a polynomial, c ≥ 1 . Lemma: If NTIME [ n ] ⊆ DTIME [ n c ] then for all k ≥ 1 , Σ k TIME [ t ] ⊆ Σ k − 1 TIME [ t c ] . We prove the following, which will be very useful in our final proof. 19-a

  23. A Slow-Down Lemma (Trading Alternations For Time) Main Idea: The assumption NTIME [ n ] ⊆ DTIME [ n c ] allows one to remove alternations from a computation, with a small time increase Let t ( n ) ≥ n be a polynomial, c ≥ 1 . Lemma: If NTIME [ n ] ⊆ DTIME [ n c ] then for all k ≥ 1 , Σ k TIME [ t ] ⊆ Σ k − 1 TIME [ t c ] . We prove the following, which will be very useful in our final proof. Theorem: If Σ k TIME [ n ] ⊆ Π k TIME [ n c ] then Σ k + 1 TIME [ t ] ⊆ Σ k TIME [ t c ] . 19-b

  24. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] Let M be a Σ k + 1 machine running in time t 20

  25. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] Let M be a Σ k + 1 machine running in time t Recall M ( x ) can be characterized by a first-order sentence: ( ∃ x 1 , | x 1 | ≤ t ( | x | ))( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · ( Qz, | x k +1 | ≤ t ( | x | ))[ P ( x, x 1 , x 2 , . . . , x k +1 )] where P “runs” in time t ( | x | ) 20-a

  26. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] Let M be a Σ k + 1 machine running in time t Recall M ( x ) can be characterized by a first-order sentence: ( ∃ x 1 , | x 1 | ≤ t ( | x | ))( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · ( Qz, | x k +1 | ≤ t ( | x | ))[ P ( x, x 1 , x 2 , . . . , x k +1 )] where P “runs” in time t ( | x | ) Important Point: input to P is of O ( t ( | x | )) length, so P actually runs in linear time with respect to the length of its input 20-b

  27. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] R ( x, x 1 ) := ( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · Define ( Qz, | x k +1 | ≤ t ( | x | )) [ P ( x, x 1 , x 2 , . . . , x k +1 )] 21

  28. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] R ( x, x 1 ) := ( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · Define ( Qz, | x k +1 | ≤ t ( | x | )) [ P ( x, x 1 , x 2 , . . . , x k +1 )] So M ( x ) accepts iff ( ∃ x 1 , | x 1 | ≤ t ( | x | )) R ( x, x 1 ) 21-a

  29. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] R ( x, x 1 ) := ( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · Define ( Qz, | x k +1 | ≤ t ( | x | )) [ P ( x, x 1 , x 2 , . . . , x k +1 )] So M ( x ) accepts iff ( ∃ x 1 , | x 1 | ≤ t ( | x | )) R ( x, x 1 ) • By definition, R recognized by a Π k machine in time t ( | x | ) , i.e. linear time ( | x 1 | = t ( | x | ) ). 21-b

  30. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] R ( x, x 1 ) := ( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · Define ( Qz, | x k +1 | ≤ t ( | x | )) [ P ( x, x 1 , x 2 , . . . , x k +1 )] So M ( x ) accepts iff ( ∃ x 1 , | x 1 | ≤ t ( | x | )) R ( x, x 1 ) • By definition, R recognized by a Π k machine in time t ( | x | ) , i.e. linear time ( | x 1 | = t ( | x | ) ). • By assumption, there is R ′ equivalent to R that starts with an ∃ , has k quantifier blocks, is in t ( | x | ) c time 21-c

  31. A Slow-Down Lemma: Proof Assume Σ k TIME [ n ] ⊆ Π k TIME [ n c ] R ( x, x 1 ) := ( ∀ x 2 , | x 2 | ≤ t ( | x | )) · · · Define ( Qz, | x k +1 | ≤ t ( | x | )) [ P ( x, x 1 , x 2 , . . . , x k +1 )] So M ( x ) accepts iff ( ∃ x 1 , | x 1 | ≤ t ( | x | )) R ( x, x 1 ) • By definition, R recognized by a Π k machine in time t ( | x | ) , i.e. linear time ( | x 1 | = t ( | x | ) ). • By assumption, there is R ′ equivalent to R that starts with an ∃ , has k quantifier blocks, is in t ( | x | ) c time − Σ k TIME [ t c ] M ( x ) accepts iff [( ∃ x 1 , | x 1 | ≤ t ( | x | )) R ′ ( x, x 1 )] ← 21-d

  32. Outline • Preliminaries • A Speed-Up Theorem • A Slow-Down Lemma √ 2 Lower Bound • Lipton and Viglas’ n • Our Inductive Argument • From n 1 . 66 to n 1 . 732 22

  33. √ 2 Lower Bound (Rephrased) Lipton and Viglas’ n Lemma: If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] for some c ≥ 1 , then for all polynomials t ( n ) ≥ n , NTIME [ t ] ⊆ DTISP [ t c , t o (1) ] √ 2 − ε , n o (1) ] Theorem: NTIME [ n ] � DTISP [ n 23

  34. √ 2 Lower Bound (Rephrased) Lipton and Viglas’ n Lemma: If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] for some c ≥ 1 , then for all polynomials t ( n ) ≥ n , NTIME [ t ] ⊆ DTISP [ t c , t o (1) ] √ 2 − ε , n o (1) ] Theorem: NTIME [ n ] � DTISP [ n Proof: Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] (We will find a c that implies a contradiction) 23-a

  35. √ 2 Lower Bound (Rephrased) Lipton and Viglas’ n Lemma: If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] for some c ≥ 1 , then for all polynomials t ( n ) ≥ n , NTIME [ t ] ⊆ DTISP [ t c , t o (1) ] √ 2 − ε , n o (1) ] Theorem: NTIME [ n ] � DTISP [ n Proof: Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] (We will find a c that implies a contradiction) • Σ 2 TIME [ n ] ⊆ NTIME [ n c ] , by slow-down theorem 23-b

  36. √ 2 Lower Bound (Rephrased) Lipton and Viglas’ n Lemma: If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] for some c ≥ 1 , then for all polynomials t ( n ) ≥ n , NTIME [ t ] ⊆ DTISP [ t c , t o (1) ] √ 2 − ε , n o (1) ] Theorem: NTIME [ n ] � DTISP [ n Proof: Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] (We will find a c that implies a contradiction) • Σ 2 TIME [ n ] ⊆ NTIME [ n c ] , by slow-down theorem • NTIME [ n c ] ⊆ DTISP [ n c 2 , n o (1) ] , by assumption and padding 23-c

  37. √ 2 Lower Bound (Rephrased) Lipton and Viglas’ n Lemma: If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] for some c ≥ 1 , then for all polynomials t ( n ) ≥ n , NTIME [ t ] ⊆ DTISP [ t c , t o (1) ] √ 2 − ε , n o (1) ] Theorem: NTIME [ n ] � DTISP [ n Proof: Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] (We will find a c that implies a contradiction) • Σ 2 TIME [ n ] ⊆ NTIME [ n c ] , by slow-down theorem • NTIME [ n c ] ⊆ DTISP [ n c 2 , n o (1) ] , by assumption and padding • DTISP [ n c 2 , n o (1) ] ⊆ Π 2 TIME [ n c 2 / 2 ] , by speed-up theorem, so √ c < 2 contradicts the hierarchy theorem � 23-d

  38. Outline • Preliminaries • A Speed-Up Theorem • A Slow-Down Lemma √ 2 Lower Bound • Lipton and Viglas’ n • Our Inductive Argument • From n 1 . 66 to n 1 . 732 24

  39. Viewing Lipton-Viglas as a Lemma (The Base Case for Our Induction) We deliberately presented Lipton-Viglas’s result differently from the original argument. In this way, we get Lemma: NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] implies Σ 2 TIME [ n ] ⊆ Π 2 TIME [ n c 2 / 2 ] . Note if c < 2 then c 2 / 2 < c . 25

  40. Viewing Lipton-Viglas as a Lemma (The Base Case for Our Induction) We deliberately presented Lipton-Viglas’s result differently from the original argument. In this way, we get Lemma: NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] implies Σ 2 TIME [ n ] ⊆ Π 2 TIME [ n c 2 / 2 ] . Note if c < 2 then c 2 / 2 < c . • Thus, we may not necessarily have a contradiction for larger c , but we can remove one alternation from Σ 3 with only n c 2 / 2 cost 25-a

  41. Viewing Lipton-Viglas as a Lemma (The Base Case for Our Induction) We deliberately presented Lipton-Viglas’s result differently from the original argument. In this way, we get Lemma: NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] implies Σ 2 TIME [ n ] ⊆ Π 2 TIME [ n c 2 / 2 ] . Note if c < 2 then c 2 / 2 < c . • Thus, we may not necessarily have a contradiction for larger c , but we can remove one alternation from Σ 3 with only n c 2 / 2 cost • Slow-down theorem implies Σ 3 TIME [ n ] ⊆ Σ 2 TIME [ n c 2 / 2 ] 25-b

  42. The Start of the Induction: Σ 3 Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and the lemma 26

  43. The Start of the Induction: Σ 3 Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and the lemma • Σ 3 TIME [ n ] ⊆ Σ 2 TIME [ n c 2 / 2 ] , by slow-down and lemma 26-a

  44. The Start of the Induction: Σ 3 Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and the lemma • Σ 3 TIME [ n ] ⊆ Σ 2 TIME [ n c 2 / 2 ] , by slow-down and lemma • Σ 2 TIME [ n c 2 / 2 ] ⊆ NTIME [ n c 3 / 2 ] , by slow-down 26-b

  45. The Start of the Induction: Σ 3 Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and the lemma • Σ 3 TIME [ n ] ⊆ Σ 2 TIME [ n c 2 / 2 ] , by slow-down and lemma • Σ 2 TIME [ n c 2 / 2 ] ⊆ NTIME [ n c 3 / 2 ] , by slow-down • NTIME [ n c 3 / 2 ] ⊆ DTISP [ n c 4 / 2 , n o (1) ] , by assumption and padding 26-c

  46. The Start of the Induction: Σ 3 Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and the lemma • Σ 3 TIME [ n ] ⊆ Σ 2 TIME [ n c 2 / 2 ] , by slow-down and lemma • Σ 2 TIME [ n c 2 / 2 ] ⊆ NTIME [ n c 3 / 2 ] , by slow-down • NTIME [ n c 3 / 2 ] ⊆ DTISP [ n c 4 / 2 , n o (1) ] , by assumption and padding • DTISP [ n c 4 / 2 , n o (1) ] ⊆ Π 3 TIME [ n c 4 / 6 ] , by speed-up 26-d

  47. The Start of the Induction: Σ 3 Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and the lemma • Σ 3 TIME [ n ] ⊆ Σ 2 TIME [ n c 2 / 2 ] , by slow-down and lemma • Σ 2 TIME [ n c 2 / 2 ] ⊆ NTIME [ n c 3 / 2 ] , by slow-down • NTIME [ n c 3 / 2 ] ⊆ DTISP [ n c 4 / 2 , n o (1) ] , by assumption and padding • DTISP [ n c 4 / 2 , n o (1) ] ⊆ Π 3 TIME [ n c 4 / 6 ] , by speed-up Observe: √ 4 • Now c < 6 ≈ 1 . 565 contradicts time hierarchy for Σ 3 and Π 3 √ 4 • But if c ≥ 6 , then we obtain a new “lemma”: Σ 3 TIME [ n ] ⊆ Π 3 TIME [ n c 4 / 6 ] 26-e

  48. Σ 4 , Σ 5 , . . . Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and lemmas 27

  49. Σ 4 , Σ 5 , . . . Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and lemmas (Here we drop the TIME from Σ k TIME for tidiness) c 4 c 4 6 · c 2 c 4 6 · c 2 6 ] ⊆ Σ 2 [ n 2 ] ⊆ NTIME [ n 2 · c ] , but Σ 4 [ n ] ⊆ Σ 3 [ n 27-a

  50. Σ 4 , Σ 5 , . . . Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and lemmas (Here we drop the TIME from Σ k TIME for tidiness) c 4 c 4 6 · c 2 c 4 6 · c 2 6 ] ⊆ Σ 2 [ n 2 ] ⊆ NTIME [ n 2 · c ] , but Σ 4 [ n ] ⊆ Σ 3 [ n c 4 6 · c 2 c 4 6 · c 2 2 · c 2 , n o (1) ] ⊆ Π 4 [ n c 8 / 48 ] 2 · c ] ⊆ DTISP [ n NTIME [ n √ 8 ( c < 48 ≈ 1 . 622 implies contradiction) 27-b

  51. Σ 4 , Σ 5 , . . . Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and lemmas (Here we drop the TIME from Σ k TIME for tidiness) c 4 c 4 6 · c 2 c 4 6 · c 2 6 ] ⊆ Σ 2 [ n 2 ] ⊆ NTIME [ n 2 · c ] , but Σ 4 [ n ] ⊆ Σ 3 [ n c 4 6 · c 2 c 4 6 · c 2 2 · c 2 , n o (1) ] ⊆ Π 4 [ n c 8 / 48 ] 2 · c ] ⊆ DTISP [ n NTIME [ n √ 8 ( c < 48 ≈ 1 . 622 implies contradiction) c 8 c 12 c 14 Σ 5 [ n ] ⊆ Σ 4 [ n 48 ] ⊆ Σ 3 [ n 48 · 6 ] ⊆ Σ 2 [ n 48 · 6 · 2 ] , and this is in 27-c

  52. Σ 4 , Σ 5 , . . . Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] and lemmas (Here we drop the TIME from Σ k TIME for tidiness) c 4 c 4 6 · c 2 c 4 6 · c 2 6 ] ⊆ Σ 2 [ n 2 ] ⊆ NTIME [ n 2 · c ] , but Σ 4 [ n ] ⊆ Σ 3 [ n c 4 6 · c 2 c 4 6 · c 2 2 · c 2 , n o (1) ] ⊆ Π 4 [ n c 8 / 48 ] 2 · c ] ⊆ DTISP [ n NTIME [ n √ 8 ( c < 48 ≈ 1 . 622 implies contradiction) c 8 c 12 c 14 Σ 5 [ n ] ⊆ Σ 4 [ n 48 ] ⊆ Σ 3 [ n 48 · 6 ] ⊆ Σ 2 [ n 48 · 6 · 2 ] , and this is in c 15 c 16 c 16 48 · 12 , n o (1) ] ⊆ Π 5 [ n NTIME [ n 48 · 12 ] ⊆ DTISP [ n 48 · 60 ] √ 16 ( c < 2880 ≈ 1 . 645 implies contradiction) 27-d

  53. An intermediate lower bound, n Υ ′ Assume NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] Claim: The inductive process of the previous slide converges. The constant derived is Υ ′ := lim k →∞ f ( k ) , where f ( k ) := � k − 1 j =1 (1 + 1 /j ) 1 / 2 j . Note Υ ′ ≈ 1 . 66 . 28

  54. A Time-Space Tradeoff Corollary: For every c < 1 . 66 there is d > 0 such that SAT is not in DTISP [ n c , n d ] . 29

  55. Outline • Preliminaries • A Speed-Up Theorem • A Slow-Down Lemma √ 2 Lower Bound • Lipton and Viglas’ n • Our Inductive Argument • From n 1 . 66 to n 1 . 732 30

  56. From n 1 . 66 to n 1 . 732 DTISP [ t, t o (1) ] ⊆ Π k TISP [ t 1 /k + o (1) ] is an unconditional result 31

  57. From n 1 . 66 to n 1 . 732 DTISP [ t, t o (1) ] ⊆ Π k TISP [ t 1 /k + o (1) ] is an unconditional result All other derived class inclusions in the above proof actually depend on the assumption that NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] . 31-a

  58. From n 1 . 66 to n 1 . 732 DTISP [ t, t o (1) ] ⊆ Π k TISP [ t 1 /k + o (1) ] is an unconditional result All other derived class inclusions in the above proof actually depend on the assumption that NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] . We’ll now show how such an assumption can get DTISP [ n c , n o (1) ] ⊆ Π k TISP [ n c/ ( k + ε )+ o (1) ] for some ε > 0 . This will push the lower bound higher. 31-b

  59. From n 1 . 66 to n 1 . 732 DTISP [ t, t o (1) ] ⊆ Π k TISP [ t 1 /k + o (1) ] is an unconditional result All other derived class inclusions in the above proof actually depend on the assumption that NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] . We’ll now show how such an assumption can get DTISP [ n c , n o (1) ] ⊆ Π k TISP [ n c/ ( k + ε )+ o (1) ] for some ε > 0 . This will push the lower bound higher. Lemma: Let c ≤ 2 . Define d 1 := 2 , d k := 1 + d k − 1 . c If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] , then for all k , DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . 31-c

  60. From n 1 . 66 to n 1 . 732 DTISP [ t, t o (1) ] ⊆ Π k TISP [ t 1 /k + o (1) ] is an unconditional result All other derived class inclusions in the above proof actually depend on the assumption that NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] . We’ll now show how such an assumption can get DTISP [ n c , n o (1) ] ⊆ Π k TISP [ n c/ ( k + ε )+ o (1) ] for some ε > 0 . This will push the lower bound higher. Lemma: Let c ≤ 2 . Define d 1 := 2 , d k := 1 + d k − 1 . c If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] , then for all k , DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . For c < 2 , { d k } is increasing – for each k , a bit more of DTISP [ n O (1) , n o (1) ] is shown to be contained in Π 2 TIME [ n 1+ o (1) ] 31-d

  61. Proof of Lemma Lemma: Let c < 2 . Define d 1 := 2 , d k := 1 + d k − 1 . c If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] , then for all k ∈ N , DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . Induction on k . k = 1 case is trivial (speedup theorem). Suppose NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] and DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . 32

  62. Proof of Lemma Lemma: Let c < 2 . Define d 1 := 2 , d k := 1 + d k − 1 . c If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] , then for all k ∈ N , DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . Induction on k . k = 1 case is trivial (speedup theorem). Suppose NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] and DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . Want: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . 32-a

  63. Proof of Lemma Lemma: Let c < 2 . Define d 1 := 2 , d k := 1 + d k − 1 . c If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] , then for all k ∈ N , DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . Induction on k . k = 1 case is trivial (speedup theorem). Suppose NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] and DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . Want: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . By padding, the purple assumptions imply NTIME [ n d k /c ] ⊆ DTISP [ n d k , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . ( ∗ ) 32-b

  64. Goal: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] Consider a Π 2 simulation of DTISP [ n 1+ d k /c , n o (1) ] with only O ( n ) bits ( n 1 − o (1) configurations) in the universal quantifier: 33

  65. Goal: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] Consider a Π 2 simulation of DTISP [ n 1+ d k /c , n o (1) ] with only O ( n ) bits ( n 1 − o (1) configurations) in the universal quantifier: ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∃ i ∈ { 1 , . . . , n 1 − o (1) − 1 } )[ C i does not lead to C i +1 in n d k /c + o (1) time ] 33-a

  66. Goal: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] Consider a Π 2 simulation of DTISP [ n 1+ d k /c , n o (1) ] with only O ( n ) bits ( n 1 − o (1) configurations) in the universal quantifier: ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∃ i ∈ { 1 , . . . , n 1 − o (1) − 1 } )[ C i does not lead to C i +1 in n d k /c + o (1) time ] Green part is an NTIME computation, input of length O ( n ) , takes n d k /c + o (1) time 33-b

  67. Goal: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] Consider a Π 2 simulation of DTISP [ n 1+ d k /c , n o (1) ] with only O ( n ) bits ( n 1 − o (1) configurations) in the universal quantifier: ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∃ i ∈ { 1 , . . . , n 1 − o (1) − 1 } )[ C i does not lead to C i +1 in n d k /c + o (1) time ] Green part is an NTIME computation, input of length O ( n ) , takes n d k /c + o (1) time ⇒ Green can be replaced with Π 2 TIME [ n 1+ o (1) ] computation, i.e. ( ∗ ) = 33-c

  68. Goal: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] Consider a Π 2 simulation of DTISP [ n 1+ d k /c , n o (1) ] with only O ( n ) bits ( n 1 − o (1) configurations) in the universal quantifier: ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∃ i ∈ { 1 , . . . , n 1 − o (1) − 1 } )[ C i does not lead to C i +1 in n d k /c + o (1) time ] Green part is an NTIME computation, input of length O ( n ) , takes n d k /c + o (1) time ⇒ Green can be replaced with Π 2 TIME [ n 1+ o (1) ] computation, i.e. ( ∗ ) = ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∀ y, | y | = c | x | 1+ o (1) ) ( ∃ z, | z | = c | z | 1+ o (1) )[ R ( C 1 , . . . , C n 1 − o (1) , x, y, z )] , for some deterministic linear time relation R and constant c > 0 . 33-d

  69. Goal: DTISP [ n 1+ d k /c , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] Consider a Π 2 simulation of DTISP [ n 1+ d k /c , n o (1) ] with only O ( n ) bits ( n 1 − o (1) configurations) in the universal quantifier: ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∃ i ∈ { 1 , . . . , n 1 − o (1) − 1 } )[ C i does not lead to C i +1 in n d k /c + o (1) time ] Green part is an NTIME computation, input of length O ( n ) , takes n d k /c + o (1) time ⇒ Green can be replaced with Π 2 TIME [ n 1+ o (1) ] computation, i.e. ( ∗ ) = ( ∀ configurations C 1 , . . . , C n 1 − o (1) of M on x s . t . C n 1 − o (1) is rejecting) ( ∀ y, | y | = c | x | 1+ o (1) ) ( ∃ z, | z | = c | z | 1+ o (1) )[ R ( C 1 , . . . , C n 1 − o (1) , x, y, z )] , for some deterministic linear time relation R and constant c > 0 . Therefore, DTISP [ n d k +1 , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . � 33-e

  70. New Lemma Gives Better Bound Corollary 1 Let c ∈ (1 , 2) . If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] then c for all ε > 0 such that c − 1 − ε ≥ 1 , c c − 1 − ε , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . DTISP [ n 34

  71. New Lemma Gives Better Bound Corollary 1 Let c ∈ (1 , 2) . If NTIME [ n 2 /c ] ⊆ DTISP [ n 2 , n o (1) ] then c for all ε > 0 such that c − 1 − ε ≥ 1 , c c − 1 − ε , n o (1) ] ⊆ Π 2 TIME [ n 1+ o (1) ] . DTISP [ n Proof. Recall d 2 = 2 , d k = 1 + d k − 1 /c . { d k } is monotone non-decreasing for c < 2 ; converges to d ∞ = 1 + d ∞ c = ⇒ d ∞ = c/ ( c − 1) . (Note c = 2 implies d ∞ = 2 ) c It follows that for all ε , there’s a K such that d K ≥ c − 1 − ε . � 34-a

  72. Now: Apply inductive method from n 1 . 66 lower bound– the “base case” now resembles Fortnow-Van Melkebeek’s n φ lower bound If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] , Corollary 1 implies � c/ ( c − 1)+ o (1) � n c 2 · c − 1 Σ 2 TIME [ n ] ⊆ DTISP [ n c 2 , n o (1) ] ⊆ DTISP [ , n o (1) ] c ⊆ Π 2 TIME [ n c · ( c − 1)+ o (1) ] . φ ( φ − 1) = 1 35

  73. Now: Apply inductive method from n 1 . 66 lower bound– the “base case” now resembles Fortnow-Van Melkebeek’s n φ lower bound If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] , Corollary 1 implies � c/ ( c − 1)+ o (1) � n c 2 · c − 1 Σ 2 TIME [ n ] ⊆ DTISP [ n c 2 , n o (1) ] ⊆ DTISP [ , n o (1) ] c ⊆ Π 2 TIME [ n c · ( c − 1)+ o (1) ] . φ ( φ − 1) = 1 Inducting as before, we get 35-a

  74. Now: Apply inductive method from n 1 . 66 lower bound– the “base case” now resembles Fortnow-Van Melkebeek’s n φ lower bound If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] , Corollary 1 implies � c/ ( c − 1)+ o (1) � n c 2 · c − 1 Σ 2 TIME [ n ] ⊆ DTISP [ n c 2 , n o (1) ] ⊆ DTISP [ , n o (1) ] c ⊆ Π 2 TIME [ n c · ( c − 1)+ o (1) ] . φ ( φ − 1) = 1 Inducting as before, we get c 3 · ( c − 1) Σ 3 [ n ] ⊆ Σ 2 [ n c · ( c − 1) ] ⊆ DTISP [ n c 3 · ( c − 1) , n o (1) ] ⊆ Π 3 [ n ] , then 3 35-b

  75. Now: Apply inductive method from n 1 . 66 lower bound– the “base case” now resembles Fortnow-Van Melkebeek’s n φ lower bound If NTIME [ n ] ⊆ DTISP [ n c , n o (1) ] , Corollary 1 implies � c/ ( c − 1)+ o (1) � n c 2 · c − 1 Σ 2 TIME [ n ] ⊆ DTISP [ n c 2 , n o (1) ] ⊆ DTISP [ , n o (1) ] c ⊆ Π 2 TIME [ n c · ( c − 1)+ o (1) ] . φ ( φ − 1) = 1 Inducting as before, we get c 3 · ( c − 1) Σ 3 [ n ] ⊆ Σ 2 [ n c · ( c − 1) ] ⊆ DTISP [ n c 3 · ( c − 1) , n o (1) ] ⊆ Π 3 [ n ] , then 3 c 3 · ( c − 1) c 4 · ( c − 1)2 c 6 · ( c − 1)2 , n o (1) ] Σ 4 [ n ] ⊆ Σ 3 [ n ] ⊆ Σ 2 [ n ] ⊆ DTISP [ n 3 3 3 c 6 · ( c − 1)2 ⊆ Π 4 [ n ] , etc. 12 35-c

  76. Claim: The exponent e k derived for Σ k TIME [ n ] ⊆ Π k TIME [ n e k ] is c 3 · 2 k − 3 ( c − 1) 2 k − 3 e k = k · (3 2 k − 4 · 4 2 k − 5 · 5 2 k − 6 ··· ( k − 1)) . 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend