les trous noirs astrophysiques
play

Les Trous Noirs Astrophysiques Pierre-Olivier Petrucci Institut de - PowerPoint PPT Presentation

Les Trous Noirs Astrophysiques Pierre-Olivier Petrucci Institut de Plantologie et dAstrophysique de Grenoble Outline Black holes: generalities The different types of astrophysical black holes Black hole environments (accretion


  1. Les Trous Noirs Astrophysiques Pierre-Olivier Petrucci Institut de Planétologie et d’Astrophysique de Grenoble

  2. Outline • Black holes: generalities • The different types of astrophysical black holes • Black hole environments (accretion disk, corona, jets,…) • A promising future

  3. Black Holes Generalities

  4. Newton and the Gravitation Law m R M Nuit des Equinoxes, 23 Mars 2013

  5. Newton and the Gravitation Law m R F grav G ravitational force ! M F grav = m G M g = G M avec R 2 R 2 (gravitational) Constant gravitational acceleration On Earth g ≈ 10 m.s -2 G = 6 . 67384 × 10 − 11 m 3 .kg − 1 .s − 2 Nuit des Equinoxes, 23 Mars 2013

  6. Escape Velocity The escape velocity can be computed from the Newton theory: r M √ 2 G v esc = R M R

  7. Escape Velocity The escape velocity can be computed from the Newton theory: r M √ 2 G v esc = R M R

  8. Escape Velocity The escape velocity can be computed from the Newton theory: r M √ 2 G v esc = R Numerical application ! - for the Earth: ! M earth =6 10 24 kg, R earth = 6400 km ⇒ v esc = 11 km/s ! M - for the sun: R M sun =2 10 30 kg, R sun = 700 000 km ⇒ v esc = 615 km/s !

  9. Black Hole Concept An astrophysical object of mass M has a escape velocity v esc = c if its radius R is smaller than r R < R lim = 2 G M ➙ √ v esc = 2 G c 2 M = 2 R g R R lim =Schwarzschild radius R g =gravitationnal radius (same limit found from GR equations)

  10. Black Hole Concept An astrophysical object of mass M has a escape velocity v esc = c if its radius R is smaller than r R < R lim = 2 G M ➙ √ v esc = 2 G c 2 M = 2 R g R R lim =Schwarzschild radius R g =gravitationnal radius Then even light cannot escape ! (same limit found from GR equations) Numerical application ➡ for the Earth, R lim = 9 mm ! ➡ for the Sun, R lim = 3 km

  11. Gravitation A huge source of energy M R

  12. Gravitation A huge source of energy To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide: M R

  13. Gravitation A huge source of energy To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide: F grav = G Mm R 2 = R lim h Rmc 2 E grav = F grav h 2 R M R

  14. Gravitation A huge source of energy To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide: F grav = G Mm R 2 = R lim h Rmc 2 E grav = F grav h 2 R Numerical applications: m=1kg, h=1m • E grav = 10 Joules on Earth • E grav = 300 Joules on the Sun M For a black hole R=R lim : R • E grav = 10 12 Joules on a black hole of 10 M sun

  15. Gravitation A huge source of energy To lift a masse m at a height h above a celestial body of radius R and mass M, we need to provide: F grav = G Mm The more compact the object (R → R lim ) the R 2 = R lim h larger E grav ! Rmc 2 E grav = F grav h 2 R Numerical applications: m=1kg, h=1m Some astrophysical objects radiate a so • E grav = 10 Joules on Earth large luminosity that the presence of a • E grav = 300 Joules on the Sun M black hole appears very likely! For a black hole R=R lim : R • E grav = 10 12 Joules on a black hole of 10 M sun

  16. Rotating Black Hole A rotating BH is smaller than a non rotating one… Non rotating Rotating Event horizon Ergosphere Schwarzschild Kerr R EH =R lim R lim /2<R EH <R lim The more the BH rotates, the larger E grav !

  17. Funny effects… Gravitational lensing

  18. Funny effects… Gravitational lensing Amplified close to a black hole

  19. Funny effects… Gravitational lensing Amplified close to a black hole

  20. A wrong Idea… Black hole does not always mean extreme density Black hole « density » (g/cm 3 ) Water density Black hole mass (M sun )

  21. A wrong Idea… Black hole does not always mean extreme density M BH ~ 10s M sun Black hole « density » > 10 10 kg/cm 3 Strong tidal effects (g/cm 3 ) Water density Black hole mass (M sun )

  22. A wrong Idea… Black hole does not always mean extreme density M BH ~ 10s M sun Black hole « density » > 10 10 kg/cm 3 Strong tidal effects (g/cm 3 ) M BH > 10 8 M sun Water Less dense than water density Small tidal effects Black hole mass (M sun )

  23. The Different Types of Astrophysical Black Holes

  24. Two Main Types of Black holes ����������������������������� ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Mass M/M sun �������������� �������������

  25. Two Main Types of Black holes ����������������������������� ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Stellar mass BH ! Origin: Final product of dead stars Mass M/M sun �������������� �������������

  26. Two Main Types of Black holes ����������������������������� • Binary system black hole + (donor) Microquasar star ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Stellar mass BH ! Origin: Final product of dead stars Mass M/M sun �������������� �������������

  27. Two Main Types of Black holes ����������������������������� • Binary system black hole + (donor) Microquasar star • The matter of the star spirals around the black hole ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Stellar mass BH ! Origin: Final product of dead stars Mass M/M sun �������������� �������������

  28. Two Main Types of Black holes ����������������������������� • Binary system black hole + (donor) Microquasar star • The matter of the star spirals around the black hole ������������������� ������������������������ • Large amount of energy released at high energy, close to the black hole Courtesy: Colpi (2018) Number of objects Stellar mass BH ! Origin: Final product of dead stars Mass M/M sun �������������� �������������

  29. Two Main Types of Black holes ����������������������������� • Binary system black hole + (donor) Microquasar star • The matter of the star spirals around the black hole ������������������� ������������������������ • Large amount of energy released at high energy, close to the black hole Courtesy: Colpi (2018) • Part of the matter feeds the black Number of objects hole but part of it is ejected Stellar mass BH ! Origin: Final product of dead stars Mass M/M sun �������������� �������������

  30. Two Main Types of Black holes ����������������������������� ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Mass M/M sun �������������� �������������

  31. Two Main Types of Black holes ����������������������������� ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Super Massive BH ! Origin: Not completely understood Mass M/M sun �������������� �������������

  32. Two Main Types of Black holes ����������������������������� • Most of the galaxies have a super Active Galactic Nuclei massive black hole in their center ������������������� ������������������������ Courtesy: Colpi (2018) Number of objects Super Massive BH ! Origin: Not completely understood Mass M/M sun �������������� �������������

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend