lelek fan and generalizations of finite gowers fin k
play

Lelek fan and generalizations of finite Gowers FIN k Theorem Dana - PowerPoint PPT Presentation

Lelek fan and generalizations of finite Gowers FIN k Theorem Dana Barto sov a (USP) Aleksandra Kwiatkowska (UCLA) SETTOP 2014 Novi Sad, Serbia August 1821, 2014 This work was supported by the grant FAPESP 2013/14458-9. Dana


  1. Lelek fan and generalizations of finite Gowers’ FIN k Theorem Dana Bartoˇ sov´ a (USP) Aleksandra Kwiatkowska (UCLA) SETTOP 2014 Novi Sad, Serbia August 18–21, 2014 This work was supported by the grant FAPESP 2013/14458-9. Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  2. Topological structures L = { f i , R j } - first-order language Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  3. Topological structures L = { f i , R j } - first-order language X is a topological L -structure if X - second-countable, compact, 0-dimensional X - L -structure f i - continuous R j - closed Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  4. Topological structures L = { f i , R j } - first-order language X is a topological L -structure if X - second-countable, compact, 0-dimensional X - L -structure f i - continuous R j - closed � Y is an epimorphism if φ : X φ - continuous φ - surjective homomorphism � ∃ ( x 1 , . . . , x n ) ∈ R X ( y 1 , . . . , y n ) ∈ R Y j φ ( x i ) = y i j Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  5. Projective Fra¨ ıss´ e theory F - countable class of finite topological L -structures Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  6. Projective Fra¨ ıss´ e theory F - countable class of finite topological L -structures F - projective Fra¨ ıss´ e class if � A and C � B JPP ∀ A, B ∈ F ∃ C ∈ F and epi C � A and C � A ∃ D ∈ F AP ∀ A, B, C ∈ F and epi f : B � B and l : D � C such that f ◦ k = g ◦ l and epi k : D Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  7. Projective Fra¨ ıss´ e theory F - countable class of finite topological L -structures F - projective Fra¨ ıss´ e class if � A and C � B JPP ∀ A, B ∈ F ∃ C ∈ F and epi C � A and C � A ∃ D ∈ F AP ∀ A, B, C ∈ F and epi f : B � B and l : D � C such that f ◦ k = g ◦ l and epi k : D F - projective Fra¨ ıss´ e limit of F if � A PU ∀ A ∈ F ∃ epi F � S ∃ A ∈ F , R ∀ S finite discrete space and surjection f : F � A and function f ′ : A � S such that f = f ′ ◦ φ epi φ : F � F such that � A ∃ iso ψ : F H ∀ A ∈ F and epi φ 1 , φ 2 : F φ 2 = φ 1 ◦ ψ Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  8. Projective Fra¨ ıss´ e theory F - countable class of finite topological L -structures F - projective Fra¨ ıss´ e class if � A and C � B JPP ∀ A, B ∈ F ∃ C ∈ F and epi C � A and C � A ∃ D ∈ F AP ∀ A, B, C ∈ F and epi f : B � B and l : D � C such that f ◦ k = g ◦ l and epi k : D F - projective Fra¨ ıss´ e limit of F if � A PU ∀ A ∈ F ∃ epi F � S ∃ A ∈ F , R ∀ S finite discrete space and surjection f : F � A and function f ′ : A � S such that f = f ′ ◦ φ epi φ : F � F such that � A ∃ iso ψ : F H ∀ A ∈ F and epi φ 1 , φ 2 : F φ 2 = φ 1 ◦ ψ Theorem (Irwin, Solecki) Every projective Fra¨ ıss´ e class has a projective Fra¨ ıss´ e limit Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  9. Projective Fra¨ ıss´ e theory F - countable class of finite topological L -structures F - projective Fra¨ ıss´ e class if � A and C � B JPP ∀ A, B ∈ F ∃ C ∈ F and epi C � A and C � A ∃ D ∈ F AP ∀ A, B, C ∈ F and epi f : B � B and l : D � C such that f ◦ k = g ◦ l and epi k : D F - projective Fra¨ ıss´ e limit of F if � A PU ∀ A ∈ F ∃ epi F � S ∃ A ∈ F , R ∀ S finite discrete space and surjection f : F � A and function f ′ : A � S such that f = f ′ ◦ φ epi φ : F � F such that � A ∃ iso ψ : F H ∀ A ∈ F and epi φ 1 , φ 2 : F φ 2 = φ 1 ◦ ψ Theorem (Irwin, Solecki) Every projective Fra¨ ıss´ e class has a projective Fra¨ ıss´ e limit which is unique up to an isomorphism. Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  10. Finite trees a, b ∈ ( T, < T ) - a finite tree Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  11. Finite trees a, b ∈ ( T, < T ) - a finite tree ( a, b ) ∈ R T ← → ( a = b or b < T a & ∄ c ∈ T b < T c < T a) Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  12. Finite trees a, b ∈ ( T, < T ) - a finite tree ( a, b ) ∈ R T ← → ( a = b or b < T a & ∄ c ∈ T b < T c < T a) Projective Fra¨ ıss´ e classes F t - finite trees with R Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  13. Finite trees a, b ∈ ( T, < T ) - a finite tree ( a, b ) ∈ R T ← → ( a = b or b < T a & ∄ c ∈ T b < T c < T a) Projective Fra¨ ıss´ e classes F t - finite trees with R F - finite fans - coinitial in F t Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  14. Finite trees a, b ∈ ( T, < T ) - a finite tree ( a, b ) ∈ R T ← → ( a = b or b < T a & ∄ c ∈ T b < T c < T a) Projective Fra¨ ıss´ e classes F t - finite trees with R F - finite fans - coinitial in F t F < - finite fans with linearly ordered branches Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  15. Lelek fan L - limit of F t = limit of F Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  16. Lelek fan L - limit of F t = limit of F s - symmetrized R L - equivalence relation with 1 and 2-point R L classes Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  17. Lelek fan L - limit of F t = limit of F s - symmetrized R L - equivalence relation with 1 and 2-point R L classes Theorem L /R L s is the Lelek fan. Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  18. Lelek fan L - limit of F t = limit of F s - symmetrized R L - equivalence relation with 1 and 2-point R L classes Theorem L /R L s is the Lelek fan. Lelek fan = unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik) Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  19. Lelek fan L - limit of F t = limit of F s - symmetrized R L - equivalence relation with 1 and 2-point R L classes Theorem L /R L s is the Lelek fan. Lelek fan = unique non-trivial subcontinuum of the Cantor fan with a dense set of endpoints (Bula-Oversteegen, Charatonik) Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  20. � Homeo Aut Aut( L , R L s ) and Homeo( L ) + the compact-open topology Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  21. � Homeo Aut Aut( L , R L s ) and Homeo( L ) + the compact-open topology � L /R L s ∼ π : L = L Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  22. � Homeo Aut Aut( L , R L s ) and Homeo( L ) + the compact-open topology � L /R L s ∼ π : L = L induces a continuous embedding Aut( L , R L s ) ֒ → Homeo( L ) Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  23. � Homeo Aut Aut( L , R L s ) and Homeo( L ) + the compact-open topology � L /R L s ∼ π : L = L induces a continuous embedding Aut( L , R L s ) ֒ → Homeo( L ) with a dense image Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  24. � Homeo Aut Aut( L , R L s ) and Homeo( L ) + the compact-open topology � L /R L s ∼ π : L = L induces a continuous embedding Aut( L , R L s ) ֒ → Homeo( L ) with a dense image h ∗ h �→ h ∗ ◦ π. π ◦ h = Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  25. Homeo( L ) Polish group with the compact-open topology Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  26. Homeo( L ) Polish group with the compact-open topology is totally disconnected i.e., for every f, g ∈ Homeo( L ) there exists a clopen U ⊂ Homeo( L ) such that f ∈ U and g / ∈ U. Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  27. Homeo( L ) Polish group with the compact-open topology is totally disconnected i.e., for every f, g ∈ Homeo( L ) there exists a clopen U ⊂ Homeo( L ) such that f ∈ U and g / ∈ U. is generated by every neighbourhood of the identity i.e., for every g ∈ Homeo( L ) and every ε > 0 there exist f 1 , . . . , f n ∈ Homeo( L ) such that g = f n ◦ . . . ◦ f 1 and d sup (id , f i ) < ε. Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

  28. Homeo( L ) Polish group with the compact-open topology is totally disconnected i.e., for every f, g ∈ Homeo( L ) there exists a clopen U ⊂ Homeo( L ) such that f ∈ U and g / ∈ U. is generated by every neighbourhood of the identity i.e., for every g ∈ Homeo( L ) and every ε > 0 there exist f 1 , . . . , f n ∈ Homeo( L ) such that g = f n ◦ . . . ◦ f 1 and d sup (id , f i ) < ε. does not contain any open subgroup, in particular it is not non-archimedean. Dana Bartoˇ sov´ a, Aleksandra Kwiatkowska Lelek fan and Gowers’ FIN k Theorem

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend